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TECHNICAL PAPER

THERMOCAPILLARY FLOW WITH EVAPORATION AND CONDENSATION

AND ITS EFFECT ON LIQUID RETENTION IN LOW-G FLUID

ACQUISITION DEVICES

I. THE PROBLEM

A. Introduction

This study addresses a problem that directly pertains to the design of propellant and liquid

management systems on spacecraft. In microgravity, liquid tends to assume an indeterminate

orientation, and spacecraft tanks often incorporate devices that exploit surface tension to position,
control, and maintain access to gas-free liquid. The outside surfaces of these liquid acquisition

devices (LAD's) usually consist of a fine-mesh screen or porous barrier that segregates liquid from

pressurant gas in the tank. Although such systems are used extensively with nonvolatile fluids, their

performance with cryogens, particularly liquid hydrogen, is rather unpredictable. Prior tests have

indicated that pressurization with heated vapor can reduce or even eliminate the ability of LAD's to

retain gas-free liquid.

The objective of this study is to investigate the possible causes for retention loss in systems
where the fluid is stored at or near its saturated state. The hypothesis that the convection processes

arising in pores with dimensions and superheating/subcooling levels corresponding to cryogenic LAD

applications are responsible for loss of retention will be evaluated. Although the study is directed at

systems that maintain a pressure differential across a liquid and vapor/gas interface, understanding

the nature of convection near the surfaces of liquid-filled wicking structures and porous media is

important to the design of many engineering systems.

B. Background

An important aspect of fluid transfer in microgravity is the acquisition of gas-free liquid from

storage tanks. 1 2 When subjected to an acceleration or gravitational field, liquid settles to the bottom

of a tank to minimize its potential energy. In microgravity, however, the orientation is indeterminate

and dictated by the competing effects of acceleration and surface tension. Oftentimes, the equilibrium

position is not over the tank outlet, and special techniques and devices must be used to acquire

liquid and to foster its expulsion.

One method is to apply scheduled thrusts via propulsive venting or attitude control rocket
firings to provide a linear acceleration large enough to settle the liquid. After imposing an

acceleration, the liquid or propellant can be fed to an engine or another receiver tank, depending on

mission requirements. Although this method has been used successfully on upper stages, such as

the Saturn V and Centaur, it tends to complicate flight operations and is impractical for missions

involving refill from an onorbit fuel depot or transfer within a complex network of tanks.



Another method is to incorporate"passive" systemsor devicesthat exploit surface tension
to hold the liquid in a desiredlocation or orientation.34 These so-called LAD's have been used on

spacecraft for years, primarily to control nonvolatile liquids and storable propellants. However, their

convenience and effectiveness have made them appealing options for use with cryogenic propellants

and fluids. LAD's can be used not only to guarantee access to vapor or gas-free liquid, but also to

control center of gravity, damp sloshing motions, and facilitate venting of liquid-free pressurant.

Numerous LAD concepts have been proposed and used over the years. The most common

ones are generally classified as either partial control devices or total communication systems. Partial

control devices consist of a basket or trap that holds only a portion of the tank's liquid contents over

an outlet while leaving the remainder free. An illustration of this concept installed within a spacecraft

tank is shown in figure 1. The outer surface of these devices is ordinarily constructed of a fine-mesh

screen or similar porous material. When the surface is exposed to vapor or gas, capillary forces in

the screen pores prevent external gas from entering the LAD and mixing with the liquid.
Alternatively, when liquid contacts the outside surface, the pores permit flow into and out of the
device.

Liquid Refill
(Resettling)

To Engine
Powerhead

Exposed
Screen

Figure 1. Partial control LAD.

These types of LAD's are primarily used to enable engine restarts in space or to provide
continual access to propellant during high acceleration maneuvers. Upon application of tfirust, the

liquid settles and refills the trap which connects to the tank outlet. The trap is sized to provide

enough gas-free propellant to restart and operate the engines until the remaining tank liquid collects
over the outlet.

Total communication or gallery-type LAD's are designed to establish and maintain an

uninterrupted flow path from the bulk liquid to the tank outlet. Figure 2 shows a schematic of a

gallery LAD that would be used for onorbit resupply of propellant. Since liquid in microgravity tends

to collect on tank walls, a common configuration includes a series of semicircular flow channels

spaced only a short distance away from the wall. The wall-facing surface of each gallery consists of a

2



fine-meshscreenthat permits theflow of liquid into thedevice,but inhibits the ingestionof gas.The
galleries areall manifoldedat the tank outlet, andas long as at leastone of the channelsremains in
contact with the bulk liquid, tank pressurizationwill drive liquid through the channelinto the tank
outlet.

SU PaP
Pockets

Exposed
Screen

To Receiver
Ves_l

Unexposed
Screen

Figure 2. Total communication LAD.

Although fundamentally different in terms of design and function, both concepts rely on fine-

mesh screens that allow liquid to pass into a channel or trap while inhibiting the flow of vapor. This

unique behavior is due to the meniscus formed by surface tension between the screen mesh and

liquid. As long as liquid adheres to the screen wires, vapor is kept out of the channel, and a pressure

difference can be maintained to support flow through the device.

The most important design characteristic of a screen or porous LAD surface is the pressure
differential it can maintain between the gas and liquid. The maximum possible differential is

commonly referred to as the "bubble point pressure" and is a function of the screen weave and liquid

properties. For a circular pore, the equation for bubble point pressure is easily derived from a force

balance equating surface tension stress along the contact line to the pressure difference across the

meniscus. In almost all applications, however, the screen consists of a complex interweave of wires

or a random assortment of sintered metallic fragments that is extremely difficult to characterize

analytically. Because of this, the equation for the screen's bubble point APb, 4 namely:

Ap b = 4ycos coD ' (1)

is used to determine an effective hydraulic diameter D based on an experimentally measured

pressure difference. For most fluids used in propellant applications, the contact angle co is nearly
zero and cos to = 1. The size of commercial screens ranges considerably, and weaves with effective

diameters as low as 1 I.tm to 10 I.tm are available. 5

3



The performanceof screenLAD's with nonvolatile liquids is well understoodand hasbeen
demonstratedin numerousapplications. When inside a screen channel or trap, these fluids are
relatively immune to the minute departuresin thermodynamic equilibrium caused by venting,
pressurization, or conduction heating through the screen structure. Evaluating LAD retention
performance is a straightforward problem that involves estimating screensize requirementsfrom
equation (1) and determining if the total pressurein the LAD ever results in a gas/liquid pressure
differential that exceedsthe screen'sbubblepoint.

With cryogens and fluids stored in a saturatedstate, retention behavior is more complex.
Since evaporation from screensexposed to gas or vapor is more prevalent than with nonvolatile
liquids, wicking considerationsbecomeimportant.45 Furthermore,becausevapor may be generated
within the LAD as a consequenceof unavoidableheat leaks, features must be added to remove
trappedvapor either throughstraight ventingor periodiccooling andcondensation.

Two very important aspectsof spacecraftcryogenic fluid acquisition systems are tank
pressurizationand venting, which must be employed wheneverthe liquid is actively handled or
controlled.1Pressurizationis necessaryto provide adequatebackpressurefor liquid expulsion to an
enginepowerheador anothertank. Venting, on theother hand,is performedduring fill operationsto
relievebackpressureor is implementedperiodicallyto compensatefor liquid boiloff andvaporization.
Both procedures involve changing the thermodynamic state of the pressurant relative to the liquid.

The most common pressurant gases used with nonvolatile liquids are ambient-temperature

nitrogen and helium, which are supplied from a separate receptacle or tank. Since the liquid is

subcooled, it is relatively immune to the changes in thermodynamic state caused by pressurization

and venting. This type of pressurization system can also be used with cryogens and other saturated

liquids, provided the pressurant has a lower boiling point than the liquid.

Another method, which has the potential for reducing cryogenic storage system weight and

complexity, is "autogenous pressurization." With this concept, a portion of the liquid is drawn off,

pressurized, heated, and reinjected into the tank as the pressurant gas. The benefits of this system

are its elimination of an additional gas supply and its potential reduction in weight. The drawbacks

are that the vapor and liquid in the acquisition system are thermodynamically linked, and the liquid is

much more susceptible to heating conditions in the pressurant and LAD structure.

C. Statement of Problem

Prior experiments have shown retention of volatile liquids to be very sensitive to the type of

pressurization system used. This is particularly true of liquid hydrogen (LH2) which exhibits a

notable drop in retention capability when pressurized using an autogenous system (i.e., heated

hydrogen pressurant). Until recently, the reduction in screen bubble point observed in previous

experiments was attributed to evaporation and dryout along the screen surface. This explanation

would be plausible if the wicking rate had been too low to compensate for evaporation losses.

However, when screen coupons and LAD's were subjected to highly evaporative environments,

there appeared to be no significant degradation in retention capability. That is, application of direct

conductive heating, pressurization with saturated hydrogen vapor, or pressurization with heated

helium failed to incur much change in the nominal bubble point. 6-13
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The only time that a consistentreduction in retentionoccurredwaswhen the tank and LAD
surfacewere pressurizedwith heatedhydrogen.Although no theoreticallybasedinvestigationof this
phenomenahas been conducted, retention loss seems to ensue when the porous structure is
subcooledwith respectto the vapor. This fact, however,doesnot in itself constitutea completeor
adequateexplanation for retention loss.Rather,thecauseis likely relatedto the liquid's responseto
thermodynamicnonequilibriumbetweentheliquid andpressurant.

An immediateconsequenceof nonequilibrium is the convectionarising from heat transport
and temperaturedifferencesin the screenpores.The most likely convectionmodesin the size range
consideredhere are thermocapillarity, which arisesfrom thermalvariation of surface tensionalong
the meniscus,and evaporationand condensation,which becomeimportant if the liquid is near its
saturated state. The flow arising from these convection modes, in turn, can influence surface
morphologyand may be responsiblefor thedeteriorationin retentionobservedin experiments.

The problem, therefore, is to determine whether the convection processesarising from
thermodynamicnonequilibrium betweenthe liquid andpressurantcould lead to the retentionfailures
observedin previousLAD experimentswith liquid hydrogen.

D. Study Approach

The primary objectives of this study are to examine the retention problem and develop a

plausible explanation for the cause of retention loss. In so doing, this study will improve

understanding of the fluid flow associated with the subcooling and superheating of volatile, wetting

liquids in small pores. Of particular interest is the manner in which these processes influence

interfacial heat transfer and liquid surface morphology.

The study approach has been divided into six related tasks. The first is to formulate the

problem in such a way that the hypothesis of convection about individual pore surfaces being the
cause of retention loss can be evaluated. This requires development of a physical representation of

the problem that models the transport phenomena and surface behavior of pores with length scales

between 1 I.tm and 10 2 l.tm and superheat/subcooling levels of 10 -1 K to 1 K.

In the second task, the governing equations and boundary conditions that characterize the
convection modes associated with the physical model are derived. For the length and temperature

levels considered here, the modes include thermocapillary stress, buoyancy, evaporation, and

condensation. An important aspect of this task is to define a consistent set of dimensionless

parameters that account for the fluid property and force ratios relevant to the problem. Following the

approach of Burelbach et ai.,14 these parameters are obtained by scaling the governing equations and

boundary conditions according to viscous scales. This approach is necessary for application of the

one-sided approximation, which allows one to disregard transient vapor phenomena and to focus on

liquid behavior. It also provides a basis for performing scaling comparisons, and renders the

governing equations in a form more convenient for numerical analysis.

The third task involves development of a numerical model based on the finite element method.

This model is incorporated in a computer code that calculates steady-state velocity, pressure, and

temperature distributions, while accounting for deformation of the free surface. A major challenge in

modeling the highly wetting fluids considered in this problem is the handling of low contact angles in

the meniscus interline region. The large surface derivatives near these points promote substantial

5



gradientsin the flow parameterswhich arebesthandledusing higher-orderinterpolation functions.
Another challenge is the large numberof terms that must be included in the calculation of surface
geometry.The equationusedfor this is derived from the normalstressbalanceand is comprisedof
terms representing pressure, thermally induced surface tension variation, momentum change
betweenthe vapor and liquid, and viscousstress.

In the fourth part of the study, the dimensionlessparametersderived from scaling the
governing equationsand boundaryconditions areused to assessthe relative influence of different
terms in the equations for velocity/pressure,temperature,and surfacegeometry. This provides an
approximateindication of which forcesand convectionmechanismspredominateat different length
and temperaturescales.Such a scalinganalysis is also valuable for estimating physically relevant
parametervalues.

The fifth taskinvolves numericalexaminationof thermocapillaryand interfacial flow abouta
fixed, low contact angle surface.By assumingvanishingly small Bond, Capillary, and Crispation
numbers,one can safely ignore deformationand assumea circular geometry.The purposehereis to
examine the separateand combined effects of thermocapillarity, condensation/evaporation,and
contactangleon interfacial temperatureand pressure,heattransfer,circulation, and surfacestress.It
is important to assessthe fundamental behavior of convection since it directly influences the
interfacial characteristicsresponsiblefor surfaceinstability and lossof retention.

The sixth and final task involves examinationof surfacedeformation.The criteria that link
surface deformation to retention loss are developed, and an analysis of first-order effects is
performedby assumingdecoupledsolutions for the flowfield and meniscus.Meniscus geometryis
recalculated using the steady-stateinterfacial velocity, pressure,and temperature distributions
determined in the fifth task. The purpose is to evaluate the relative influence of deformation-
producing terms and dimensionlessparametersin the equation for surfacecurvature. Finally, the
simultaneous solution of the steady-stateflowfield and surface is considered. The intent is to
identify retention loss mechanismsthat could ariseasa result of either thermocapillaryor interfacial
convection.

E. Significance of Study

The significance of this study lies in both its contribution to engineering applications involving

heat transfer in porous media and its advancement to the understanding of two-phase microgravity

fluid behavior. Although the emphasis is on retention in cryogenic liquid acquisition systems, the
results and methodology have application to a variety of fields. From an applications standpoint, the

study addresses a problem that is particularly relevant to devices that encounter condensation and

evaporation along a very fine porous structure. Heat transfer and overall performance of such

systems are strongly influenced by the combined-mode convection associated with thermocapillarity,

evaporation, and condensation.

A good example of this is the heat pipe, 15 where prediction of latent heat transport across the

evaporator and condenser wicking surfaces is crucial for determining the total axial heat transfer rate

of the device. In the evaporator section, thermocapillarity and evaporation both tend to convect

superheated liquid onto the surface and promote transfer of latent heat and mass into the vapor. In

the condenser, however, thermocapillarity and condensation counteract one another in that

thermocapillarity tends to cool the interface and augment heat transfer, while condensation restricts
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it by raising interfacial temperature.Thecombinationof thesemodescomplicatethe balancebetween
heatand masstransferat different endsof the pipe which caneither augmentor inhibit the overall
heat transfercapability of the system.

Studying the influence of interfacial convectionon heattransferand retention in small liquid
cavities also representsan original contribution to the field of microgravity fluid mechanics.The
problem considered in this study can be viewed as a subset of a broader class of problems
addressingfree liquid surfacessubjectedto the combinedeffectsof thermocapillarystressand other
convectionmechanisms.Although manyproblemsof this type havebeenstudiedbefore,most work
in this areato datehasconcentratedon the separateor simultaneousaction of thermocapillarity and
buoyancy--the most familiar casesbeing the liquid-bridgeand float-zoneconfigurationsanalyzedin
materials processing.16These regimesareparticularly useful for modeling and predicting the melt
concentrations in various ground-basedcrystal growth techniques.They are also often used to
model low-gravity containerless processing due to the unavoidable presence of extraneous
accelerationsand disturbances.In eithercase,buoyancymust be accountedfor becauseof the large
length scalesassociatedwith the problem(~1 cm to 1 m). Furthermore,since the ratio of viscous
forcesto surfacetensionis usuallynegligible, freesurfacedeformationis dictated almostentirely by
hydrostaticeffectsandis independentof flow conditions.

F. Summary

The goal of this study is to improve the understanding of convection processes associated

with the subcooling and superheating of volatile, wetting liquids in a microgravity environment.

Although the results are pertinent to low-gravity applications, the selection of length and

temperature scales is geared more toward systems having small pores and liquid passages. The

primary reason for conducting such a study is to determine if flow effects around these surfaces could

lead to conditions of retention failure when subjected to different environmental conditions.

The study approach consists of the following: (1) formulation of a physical model; (2)

derivation of the governing equations, boundary conditions, and dimensionless parameters that

characterize fluid flow with thermocapillary stress, buoyancy, evaporation, and condensation;

(3) development of a numerical model that calculates the steady-state velocity, pressure, and

temperature distributions in the pore, while accounting for deformation of the free surface; (4) scaling
analyses to assess the relative influence of different terms in the equations for velocity/pressure,

temperature, and surface geometry; (5) numerical examination of thermocapillary and interfacial flow

about a fixed, low contact angle surface; and (6) examination of surface deformation via both

decoupled and integrated solutions.

H. REVIEW OF LITERATURE

A. Introduction

The approach draws on work from several different research areas. In this section, literature

from each field is reviewed to develop an integrated basis for analyzing the problem. First, the

experimental work with liquid hydrogen and various pressurant conditions that led to identification of
the "retention problem" is presented. This section summarizes the results of tests in which



screenedcoupons and LAD channelswere subjectedto different pressuranttypes, temperatures,
andconductiveheat loads.

Since the problem involves convectionon a microscopicscale, the literature was reviewed
primarily in the areas of thermocapillarity, evaporation, and condensation. When it comes to
characterizingthermocapillary flow, the situationexaminedhereis very similar to the liquid bridge
and float-zoneconfigurationsstudiedin materialsprocessing.However, important differences,such
as the presenceof liquid/vapor phase change,small contact angles, and mass transfer with a
relatively large liquid reservoir, make the problem addressedhere unique. It is also expectedthat
becauseof the small length scales,viscousandflow-related phenomenacould competewith surface
tension and causeappreciablesurfacedeformationunder someconditions. Much of the interfacial
physicsandassumptionsregardingsurfaceequilibrium alsoappearin prior investigationsof thin film
and capillary jet instability. This study, however,considersa pore geometryand dimensionalrange
in which intermolecular attractionbetweenthe liquid and solid is best accountedfor by a contact
angleconstraintratherthana correctedsurfaceor body force.By ignoring intermolecularand,aswill
be shown later, accelerationbody forces,it is assumedthat any deformationof the free surfaceis
causedby surfacetensionvariation,pressure,interfacialmomentumflux, and/or viscousstress.

Note that several dimensionlessgroupings are referred to throughout this section and
remaining portions of the text. Most of theseparametersare derived in section III as part of the
theoreticaldevelopment,but afew aretakendirectly from thereferences.A definition of all groupings
is providedin table2.

B. Liquid Retention

Several investigations of LAD retention performance with cryogenic liquids have been

performed since the early 1970's. Among the earliest was Burge and Blackmon 6 who tested the

retention capabilities of fine-mesh screen samples in LH2 while subjected to warm hydrogen

pressurant. In their experiments, hydrogen vapor was evaporated from a screen and blown back

through a fan and heater. Contrary to their earlier experiments with nitrogen, they found that

warming the hydrogen vapor by only 5 to 10 K above the bulk liquid temperature caused premature
retention loss (i.e., lowering of the effective bubble point pressure). For vapor temperatures above

30 K, the reduction in liquid retention reached a maximum of -70 percent of the nominal bubble point

pressure.

Burge and Blackmon later conducted another experiment in which screen samples were

tested in an apparatus that enabled tighter control of pressurization rate and heat flux. Although the

heater was placed closely above the screen, there was no fan or associated forced convection as in

the first test. Results showed no premature retention loss for vapor temperatures up to 40 K. This

behavior, however, was not observed in a third larger-scale experiment in which a screen basket

was submerged in LH2 and then raised, while inverted, into hydrogen vapor of various temperatures.

With temperatures of 40 K, retention loss was clearly evident and caused an immediate draining of

the basket, but with temperatures less than 30 K, the basket retained the liquid until the hydrogen

gas pressure was allowed to drop below the vapor pressure of the liquid.

Blackmon 7 later tested a vertically oriented screen channel in which LH2 was withdrawn up

through the device and out the top of the tank (i.e., minus one-g expulsion). He tested with both

hydrogen and helium gas, and found that warm pressurant, regardless of gas type, resulted in
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prematureretention loss.The reduction in retention was as much as 70 percent of the design bubble

point with hydrogen vapor, but was only about 20 percent with helium. In some of the tests with
warm pressurant, heat conduction into the channel through fittings and solid portions was sufficient

to cause vaporization of the liquid and to eliminate retention capability altogether. Tests with colder

pressurant close to the hydrogen saturation temperature yielded generally better than predicted

results and no premature screen breakdown. There was, however, more variability in retention

capability with hydrogen than with helium.

Using the same apparatus employed by Burge and Blackmon in their second series of screen

sample tests, Cady 8 later measured the bubble points of different screens in LH2 while subjecting

them to various calibrated heating rates. He found that, even at rates greatly exceeding the worst

case for a spacecraft application, the maximum reduction in bubble point was less than 15 percent--a
result consistent with the less extensive testing by Burge and Blackmon. Wicking through the

screen and evaporation at the surface effectively absorbed the heat. This was in spite of the test
conditions in several of the runs being deliberately established so that the liquid beneath the screen

was superheated with respect to the local liquid pressure.

Paynter and Page 9 and Warren 1° 1_ conducted minus one-g expulsion tests with LH2 in a

63.5-cm diameter spherical tank fitted with a total communication acquisition device comprised of

eight screened channels. In tests where the outflow was continuous, no screen breakdown occurred,

regardless of the pressurant type (i.e., hydrogen or helium) or pressurant temperature. However, in

tests where the expulsion was performed intermittently, with alternating hold and outflow periods,

retention loss occurred repeatedly with warm hydrogen pressurant but not with warm helium. The

pressure difference across the screen imposed by hydrostatic head and screen flow-through loss,

although not measured, was probably not more than 80 percent of the bubble point of the screens
used in the LAD. Warren concluded that either hydrogen or helium may be used as pressurant as

long as there are no stagnant regions within the LAD.

Bennet0 2 also conducted retention experiments involving a 34-cm high partial control LAD

(i.e., start basket) in LH2. At the beginning of each test run, the basket was submerged in liquid. The

liquid was then drained to a level below the basket and held there so that the basket was completely
surrounded by the pressurant gas. Tests were conducted with both gaseous hydrogen and helium. In

all hydrogen pressurant tests, the vapor was cooled to about 90 K prior to injection into the test
dewar, and the screen failed even before the liquid level was lowered to the bottom of the basket. On

average, the hydrostatic head at the point of failure was 50 percent of the normal bubble point of the
screen in LH2. With helium pressurant, the liquid level could always be lowered below the basket,

and subsequent retention was demonstrated for periods up to 3 h.

The most recent and possibly comprehensive investigation of LH2 retention was performed by

Meserole and Jones, 13 who measured the breakdown pressure of a semicircular screened channel

with different pressurant types (i.e., helium, ambient temperature hydrogen, and parahydrogen),

pressurant temperatures, and degrees of liquid stagnation. With helium, no measurable variation in

retention performance was observed, and the breakdown pressure in every test was close to the

predicted screen bubble point. With hydrogen vapor, however, retention exhibited strong sensitivity
to pressurant temperature. Cool vapor at approximately saturation temperature yielded breakdown

pressures close to the predictions, which were slightly less than with helium. With a warm vapor,

the breakdown pressure was significantly reduced, and temperatures as low as 15 to 20 K above

saturation caused sharp reductions in liquid retention capability.
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Meseroleand Jonesalso found that interruptingthe outflow and stagnatingliquid in the LAD
with hydrogenpressurantmarkedlyreducedretentioncapability, evenwith vaportemperaturesa few
degreesabove the bulk liquid temperature.Retention failure repeatedlyoccurred shortly after the
outflow was interrupted, when the differential pressurewasjust 20 percentof the nominal bubble
point.

Meseroleand Jonesproposedseveralexplanationsfor their observationsand thosemade by
previous researchers.They felt that evaporativecooling was responsiblefor the strong toleranceto
heatedhydrogen vapor observedwith individual screensamples,while the reducedretention was
attributed to condensationof warm vapor on the screen.During liquid expulsion, the vapor is
pressurized,and the screenporesbecomesubcooledwith respectto the vapor, thereby promoting
condensation.However, in screensampleexperiments,either thereis no active pressurizationor the
screenis heateddirectly. Thus, the poresaresuperheatedwith respectto the vapor, andevaporation
occurs.With helium, evaporationalways takesplaceregardlessof whether the vapor is pressurized
or not.

Meseroleand Jonesfelt that the resultsof thesetestshelpedclarify the differencesobserved
with variouspressurantconditions.Although they did not offer anexplanationasto why evaporation
and condensationinfluence retentionso differently, they felt that further investigationwas warranted
to determinehow screenheatingandcooling altersthe attachmentof the liquid surfaceto the screen
wires and causesprematurebreakdown.

C. Thermocapillary-Driven Convection

Most prior work involving thermocapillarity and its closely associated topic of combined

thermocapillary-buoyancy driven flow has been done in the area of materials processing.16 Specific

applications that have served as an impetus for investigations are crystal growth, 17 glass
manufacturing, is and industrial processes such as welding. 19 Although much of this research,

particularly in conjunction with the study of flowfields in containerless processing, is relevant to the

study of convection-induced retention loss, direct application is limited by the fact that the melts

associated with materials research typically have larger contact angles (to ~ 90 °) and do not involve
appreciable liquid-vapor phase change.

A popular geometry for the study of pure and combined convection is the rectangular cavity

with isothermal side walls and a horizontal upper free surface. Numerical investigations by Bergman
and Ramadhyani, 20 Bergman and Keller, 21 Jue et al., 22 and Hadid and Roux 23 yielded insight into the

sensitivity of flow variables to key dimensionless parameters. In all cases, the variation of free

surface geometry was treated as a lower-order effect and neglected by assuming a small thermal

variation of surface tension with respect to a reference (i.e., low Crispation number Cr) and low ratio
of viscous to surface tension forces (i.e., low Capillary number Ca).

Several researchers have applied the same geometry to evaluate thermocapillary convection

with a deformable liquid surface. Sen and Davis, 24 Sen, 25 and Strani et al. 26 applied asymptotic

methods to determine the flowfield and free surface shape at the ends and core of differentially

heated slots. They found that thermocapillary convection with either fixed contact angle or pinned

end conditions causes bulging in colder surface regions, where the flow accumulates and increases

pressure. Zebib et al. 27 and Carpenter and Homsy 2s examined interface geometry by means of

perturbation techniques, and Sen 25 applied an independent coupling of the meniscus force balance
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condition to show that the interface can undergo significant deflection with large values of Cr.
Assuming a prescribed contact angle, Cuvelier and Driessen 29 found that the free boundary is highly
sensitive to Ca.

Cylindrical geometries have also been used to investigate thermocapillary and buoyancy-

driven flow in melt regions. Earlier studies by Fu and Ostrach, 3° Shen et al., 31 and Kobayashi 32

assumed a fixed surface independent of convective effects. Xu and Davis 33 studied thermocapillary

instabilities of a cylindrical column. Somewhat more recently, Duranceau and Brown, 34 Hyer et al.,35

Lan and Kou, 36 and Zhang and Alexander37 addressed the problem of a cylindrical float zone with a

deformable interface. They applied a pinning condition at the contact point and observed little flow

induced deformation. The notable deformation in the buoyancy-dominant one-g regime was

attributed to hydrostatic effects, while the surface remained essentially flat in a microgravity

environment. These results and the assumption of vanishingly small Cr and Ca were entirely

consistent with the relatively large domains considered in these studies. However, Kamotani and

Platt 3s recently showed that variation in surface geometry could greatly influence convection within

the cavity. Through experiments and numerical analysis, they compared the convection and heat

transfer characteristics of a flat and curved 10°-contact angle surface, and noted a marked reduction

in thermocapillarity, flow intensity, and local heat transfer rate with the highly curved surface.

All of these results indicate that convection-induced deformation can be neglected in float-

zones and macroscopic free surface flows, where Ca and Cr are ordinarily quite small. The length-
scales of the retention problem, however, are large enough that the values of Ca and Cr fall within the

range where deformation can be significant. When viewed in this context, the results suggest that

retention loss may be related to convection-induced deformation of the free surface.

D. Liquid Evaporation and Condensation

Most past studies of evaporating menisci have focused on either the intrinsic meniscus,

which is the portion of the interface characterized solely by surface tension forces, or the submicron

region near the interline where the solid substrate plays an important role in surface phenomena.

Work dealing with the submicron region has concentrated on determining the heat transfer and

stability of thin liquid films and menisci close to solid surfaces. In this region, buoyancy forces and

convective terms in the momentum equation are typically ignored, and emphasis is placed on the
relationship between thermocapillary stress and intermolecular forces between the contact surface

and liquid (see Potash and Wayner, 39 Renk and Wayner, 40 Werhle and Voulelikas, 41 and

Mirsamoghadam and Catton42). In a study of the stability of an evaporating liquid film, Burelbach et

al. 14 treated the van der Waals forces as a body-force term in the momentum equation. They noted

that the combined action of this attraction, thermocapillarity, and evaporation can lead to significant

instability and deformation of the surface. This behavior had been observed before in other references

cited by Burelbach et al.

Swanson and Herdt 43 developed an analytical model of an evaporating meniscus in a capillary

tube accounting for all regions of the meniscus. Their assumptions typified those of prior studies;

they ignored hydrostatic pressure variation and convective terms in the momentum equation, and

accounted for Marangoni effects only in the thin film region. The solution for the thin film near the

wall was subsequently coupled with that through the center of the tube. Swanson and Peterson 44

developed a mathematical model of the intrinsic meniscus in a V-shaped channel for an unsaturated
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wetting liquid evaporatinginto air. The formulation of the model generatedmatching (or coupling)
parametersthat accountedfor phenomenain the interline region.

In a study very similar to the problemin this report,Chen et al. 45 applied a one-sided model

of a superheated liquid to investigate motion in a square cavity with isothermal side walls. They

determined the flowfields and interface heat transfer rates at moderate values of Marangoni number

Ma, interfacial resistance Rs, and Biot number Bi. Buoyancy forces were neglected, and meniscus
geometry was calculated independently based on hydrostatic pressure considerations alone. This

assumption may be invalid for an evaporating surface. In this case, temperature-dependent vapor
recoil arises in the normal force balance and may influence geometry even at low Ca and Cr.

E. Summary

In this section, literature relevant to the retention problem was reviewed. It first addressed

prior tests of screen retention capability with liquid hydrogen and discussed the difficulties of

pressurizing with heated hydrogen vapor. Although retention failure was repeatedly encountered in

several experiments, no plausible explanation of its cause had been proposed. Meserole and Jones 13

improved understanding in this area by distinguishing the probable surface convection modes

associated with vapor and inert gas pressurization. However, they did not suggest reasons why the
mode resulting-from vapor pressurization (i.e., condensation) contributed to retention loss.

Since retention loss was observed in pores having characteristic dimensions of ~1 lam to 10 2

ptm, literature on the convection modes appropriate to these length-scales, namely thermocapillarity,
evaporation, and condensation, was surveyed. Most of the work reviewed in the area of

thermocapillary flow dealt with variants of the well-known float-zone and liquid bridge problems.

Although the surface pore problem is similar to these, it is unique in several ways: (1) the liquid is
volatile such that fluid motion results from the simultaneous action of interfacial mass transfer (i.e.,

evaporation or condensation) and thermocapillary stress; (2) buoyancy (whether in one or zero-g) is

negligible due to the small dimensions of the problem domain; (3) the interface curvature (in the

isothermal state) is nearly constant due to vanishingly small Bond numbers; (4) the liquid is wetting

and intercepts the solid boundaries at a constant acute contact angle; (5) the pore connects to a

large reservoir that permits balancing of mass flow through the pore; and (6) the ratio of viscous
forces to surface tension is large enough to cause appreciable surface deformation under some flow
conditions.

Prior studies in thermocapillary flow were useful for understanding basic flow patterns and

parameter sensitivities, but none fully addressed the issues associated with the retention problem.

The same held true for research in the field of interfacial flow and heat transfer which is primarily

geared toward stability of thin films and meniscus interline regions. In addition, the length scales of

interest were typically much smaller and, therefore, required inclusion of solid/liquid intermolecular
forces. However, the approach used for modeling interfacial equilibrium and its influence on mass

transfer is nevertheless applicable to the problem in this study.
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III. THEORETICAL MODEL DEVELOPMENT

A. Introduction

The problem is to evaluate the influence of thermocapillarity, evaporation, and condensation
on fluid flow, heat transfer, and retention in a small pore of volatile, wetting liquid exposed to its own

vapor. To analyze this problem, one must first define a physical reference and corresponding
mathematical model that characterize the thermophysics and imposed conditions on the surfaces of

porous media. The challenge is to capture all of the key aspects related to convection and free
surface behavior, while keeping the model simple enough for straightforward scaling and numerical

analyses.

B. Physical Model

Since the retention problem has not been theoretically examined before, definition of the

physical model is one of the primary contributions of this study. To begin, one must identify the
features of this problem that distinguish it from the traditional approach of evaluating pore retention

(equation (1)). One feature that arises from imposed pressurization and/or direct heating of the LAD
screen is a departure from thermodynamic equilibrium between the liquid and pressurant. It is

important that the physical model adequately represents this deviation and properly portrays the

relative quasi-equilibrium thermodynamic states between the pore structure, liquid, and pressurant

gas. A second feature is the complex geometry associated with screens and porous media. The

traditional approach of estimating screen retention capability (equation (1)) is based on a circular

pore geometry that permits application of a simple force balance. Likewise, in developing a physical

model for this problem, it is advantageous to define a domain whose boundaries are not only easy to

characterize analytically but also produce the convection modes relevant to the retention problem.

To define appropriate thermodynamic relationships between the liquid, gas, and pore

boundaries, the nonequilibrium conditions established in the retention tests described in section II
are reviewed. The types of heating conditions that the LAD's and screen samples were subjected to

can be generalized as follows: (1) pressurization with heated vapor, 6 7 9-13 (2) evaporation with an
overhead heater, 6 8 (3) evaporation with an overhead heater followed by recirculation over screen

surface, 6 (4) evaporation through conductive heating of screen, 8 and (5) pressurization with heated
helium.7 9-1113

In case (1), vapor is introduced into a vessel containing an LAD at a higher pressure and

temperature than the saturated liquid in the channel or trap. Upon pressurization, the liquid is no

longer in a saturated state, and it becomes subcooled with respect to the vapor. The process in case
(1) incurs the most retention failures and represents a subcooling of the liquid and screen relative to

a saturated or superheated vapor. In cases (2) and (3), the vapor is obtained through evaporation,

and liquid in the vicinity of the surface is superheated with respect to the surrounding vapor. In case

(2), the pressurant is not actively recirculated over the screen, and no significant retention loss is
observed. But in case (3), recirculation takes place and retention failures are more numerous.

In case (4), liquid is evaporated by heating through the screen wires. As in case (2), the

liquid becomes superheated relative to the vapor. However, because the entire wire is heated, the

region of superheat is expected to extend well around the pore vicinity. This case is also similar to
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case (2) in that no significant drop in retention capability occurs. In case (5), heated helium is

introduced at a higher pressure and temperature at the same general conditions as case (1).

Although the liquid is again subcooled with respect to a higher pressure and temperature pressurant,

no reduction in retention capability is observed. The main aspect that distinguishes cases (1) and

(5) is the higher level of nonequitibrium between the liquid and gas in the presence of helium, which

serves to reduce both evaporation and condensation.

The relative thermodynamic states in these tests represent either a superheating or

subcooling of the liquid and wire structure relative to a saturated vapor. In addition, the presence of

helium gas can be viewed as an imposed reduction in vapor/liquid equilibrium along the exposed
surface.

Another important aspect of the physical model is the geometry of the problem domain and

free surface. As stated in section I.C, retention loss is likely due to instability or adverse

deformation of the meniscus in response to the convection ensuing from thermodynamic non-

equilibrium. Therefore, the free surface must be defined within the context of a control volume to

enable application of governing equations and boundary conditions for fluid motion and heat transfer.

This is difficult because the contact surface of a typical porous structure usually consists of a

complex interweave of metal wires or random arrangement of sintered metallic fragments. Thus,

basing an assessment on an actual application would be unduly complicated by the variability in

contact surface geometry and uncertainty regarding interior flow conditions.

The problem is greatly simplified by assuming a two-dimensional domain that approximates

the geometrical characteristics of a porous structure. A domain that was considered early in the

study is depicted in figure 3. It basically represents a two-dimensional cross section of a screen with
individual menisci attached to each wire. An advantage of this configuration is that the curved side

walls closely model the shape of screen wire surfaces and properly account for the surface's ability

to readjust to pressure changes by moving along the wires.

For an initial investigation, however, the domain in figure 3 introduces many complexities that

would have to be accommodated in a sophisticated numerical model and procedure. One of the most

significant is the lack of velocity, pressure, and temperature data for the boundaries defining the

liquid channel. An additional determination of bulk velocity, pressure, and temperature in the channel

would be required prior to solving the flowfield around the surface and wires. Secondly, modeling a

moving deformable meniscus would add considerable complexity to the numerics of the problem.

vapor

Figure 3. Simplified pore schematic.

14



The model is further simplified by making the following assumptions.First, at the point of
retention loss for a static isothermal fluid, the meniscusacquiresa maximum curvature, and its
contactpoints lie on a chordconnectingthecentersof thecircles in figure 3. For the nonequilibrium
case, the meniscus should assumethe sameposition relative to the screen wires at a pressure
difference corresponding to the reducedbubble point. The approachfor analyzing the retention
problem then is to determine whethera stable, steady-statesolution of the flowfield and surface
exists at the minimum separationdistance.This assumptionallows one to fix the endpoints at this
positionandignore movementof themeniscusboundaryalongthe wire surface.

A secondassumptionis that theconvectionresponsiblefor retention lossoccursclose to the
surface,and is relatively independentof flow below the wires and in the LAD channel.Eachpore is
so small relative tothe LAD channel that the influence of bulk flow should be negligible. By
assumingfixed contact points and restricting flow effects to the surfacevicinity, the curved side
walls areprobablynothingmore thana second-ordereffectonconvectionwithin thepore.

Basedon theseassumptions,oneresortsto thegreatlysimplified domaindepictedin figure 4,
which is very similar to the geometryexaminedby Chenet al.45 It consistsof a two-dimensional
rectangular groove partially filled with an incompressible,Newtonian liquid. Although it will be
shown later that gravitational effects can be ignored, for the sake of completeness,a uniform
accelerationfield is assumedto point downwardin the-x2 (-y)-direction. The left and right sidesof
the pore (boundaries1 and 3, respectively)consist of vertical side walls. The lower boundary (2)
opensto a large reservoir to enablebalancingof liquid flow through the cavity and modeling of
capillary structureperformance.
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Figure 4. Problem domain.

The upper surface (boundary 4) is represented by a curved meniscus which is symmetric

about the pore center-line and bounded by an inert vapor. The shape of the interface is defined by the
function y(S)= y(S)(x 1,t) where the surface height above the base y(S) is a function of the lateral
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coordinatexl and time t. The interface is assumed to wet the solid side walls at an acute contact

angle co, and is further characterized by the unit normal and tangent vectors (ni and si) and contour

angle a.

Compared to the wire-based geometry in figure 3, the domain in figure 4 implicitly represents
a case where the wire diameter is much greater than the separation distance. In addition, fixing the

contact point (i.e., x2(0) = D and x2(D) = D) is akin to assuming that the meniscus can no longer

adjust to increased pressure differences between the vapor and liquid, and that it is at the maximum

bubble point pressure.

The configuration in figure 4 is similar geometrically to the domain studied in float-zone and

liquid bridge problems. 34-37 However, there are several differences in the treatment of velocity

boundary conditions that make this problem unique. On boundaries 1 and 3, for instance, the Xl and

x2 components of velocity are held at zero, Vi = 0, by invoking impermeability and no-slip. Along the

meniscus, Neumann and Dirichlet-type boundary conditions are accounted for simultaneously by

applying the xl-direction thermocapillary stress condition to V1, and calculating V2 directly from the

estimate of V1 and the normal velocity Vini arising from interfacial nonequilibrium. On boundary 2, it is

assumed that the flow into and out of the cavity is parallel and uniform. Consequently, V1 = 0, and the

average flux required to balance the total flow across boundary 4 and adjust for surface deformation

is applied uniformly as the V 2 boundary condition.

The temperature boundary conditions are basically the same as a float-zone. The side walls
and vapor are assumed to be isothermal and are held at temperatures of TI and To, respectively. To

represents the fluid's saturation temperature, while T1 can either be lower or higher depending on

whether the pore boundaries are subcooled T1 < To or superheated Tl > To with respect to the vapor.

The boundary condition for temperature on the meniscus is handled using a Robin-type condition
which will be discussed in section III.C. Unlike the float-zone problem, the temperature along

boundary 2 is held constant at the side wall temperature T_. Thus, it is assumed that the liquid

residing in the interior capillary structure is either superheated or subcooled with respect to its

surrounding vapor.

Some of the other major assumptions include incompressibility, Newtonian fluid, one-sided

approximation for all vapor properties other than density, linear equation of state for density and
surface tension in terms of temperature, and restriction of liquid/vapor phase change to free liquid
surface.

C. Mathematical Model

The equations needed to solve the five dependent variables describing this system, i.e., Vi, P,

T, and yCS), are obtained from the imposed conditions on boundaries 1, 2, and 3, the governing

equations of fluid motion, and the jump conditions across boundary 4. The calculation of y(S) is

indirectly linked to solution of the other variables and is described more extensively in section IV. To
summarize, a surface is determined that satisfies the constant contact angle constraint and normal

stress condition involving interfacial pressure, temperature, and velocity.

Throughout the remaining sections, this report makes use of linear equations of state for

surface tension and density. These approximations are all based on T1 which represents the minimum
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temperature in the liquid and vapor domain, and dependson the heating mode applied. With
superheating,Tl is the temperature of the saturated vapor Tt -- To, while for subcooling, it is the

boundary temperature TI = 7"1.

The governing relationships for velocity, pressure, and temperature are based on constant

thermophysical properties and obtained from the continuity, momentum, and energy equations for an

incompressible fluid, 47 namely:

_._= 0 , (2)

p _ + pVjVid+ed,i-rij,j-p_(T-Tl)g i = 0 ,
(3)

where

and

,97" vTu__.r_ o_9--7+ = ,

r o= _(gu+vJ,,) •

(4)

(5)

(6)

Note that the Boussinesq approximation is applied to restrict the thermal dependence of

density to the body force term in equation (3). Although the scaling results in section V will show

that buoyancy may be ignored for pore length scales <102 I.tm, the approximation is useful for

separating out hydrostatic pressure Ph from flow-induced pressure variations (i.e., dynamic

pressure) Pd, where P = Ph+Pa.

In addition to the governing equations, there are several jump boundary conditions that apply

along the meniscus surface. The simplest condition is the jump mass balance. It is used to relate

interfacial mass flux to temperature and derive velocity conditions on boundaries 2 and 4. The

balance 47 is expressed in terms of the scalar j by:

j= p (Vf Vff))nj=p°')(Vj(_-Vff)}nd , (7)

Vj(v) is the vapor velocity, Vj(s) is the velocity of the interface, and the vapor density p(V) is treated
as a constant. Assuming that the liquid domain f_ deforms with time, the total mass balance

becomes:

(8)

where F is the total boundary area. Applying incompressibility and restricting deformation and

interfacial flux to boundary 4 yields the following equation for volumetric flowrate and velocity along
surface 2:

fr fr, d_ (9)- Vinidr = (v_-E('))ndr + d-"7"'
2
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The secondand probably most importantjump condition is the momentum balance,which
becauseof its directional dependence,consistsof a normaland tangentialcomponent.Substitutionof
equation(7) into the normal componentyields a generalrelationship for surfacecurvaturewhich is
ultimately usedto calculatey(S). Similarly, from the tangential component one obtains an expression

for thermocapillary stress and a condition for velocity along the meniscus. From reference 48, the

complete tensoral expression for the jump momentum balance is:

j (Vi- Vi(v))- ( tr ij- tr _v)) n j+ y r n i+ Y,i = 0 . ( 1 O)

Equation (10) equates the stress imposed on the meniscus to interfacial momentum flux,

pressure due to surface curvature _c, and tangential stress due to surface tension gradient. The

normal and tangential components are obtained by projecting equation (10) onto the unit vectors ni

and si, respectively. In the tangential direction, one has:

j(Vi-Vi °')) s i - (cr O-tr_")) n js i+ Y,is i = 0 . ( 11 )

Pressure cancels out of the stress tensor term because it acts normal to the surface. In

addition, invoking continuity between the tangential components of liquid and vapor velocity, that is:

(Vi- Vi_v))si = 0 , (12)

yields an equation for the tangential stress balance:

(r O-r!_ )) n.f i = Y,isi , (13)
where

,,js,=u[(vi.j+vj.,)- vg')],,js, ,

and fu is the ratio of vapor viscosity to liquid viscosity. An important aspect of the one-sided model

is the assumption of a vanishingly small fu (reference 14) which removes vapor velocity from

equation (13) and yields:

zonj = Y,i • (14)

The normal momentum/stress balance is obtained by projecting equation (10) onto the normal
vector ni.

j(Vi-Vi Cv))ni - (a ii-a_ v)) n_i+ yr = 0 . (15)

The interfacial momentum flux is expressed as a function ofj and the ratio of liquid density to

vapor density fp (= p/ptV)) by:

fl
j(V i- Vi°')) n i = -ff (1-fp ) . (16)

In the case of evaporation, equation (16) represents the recoil force caused by vapor ejection

from the surface. Because fp > 1, the momentum of the vapor is higher than that of the liquid.

Consequently, the momentum change and force exerted on the interface will always point into the
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liquid. Equation (16) also representsthe force resulting from condensationand vapor impingement
on the surface.Becausethe vapor and liquid momentumvectors for this casepoint in a direction
oppositeof evaporation,theresultantforcealso pointsinto the liquid. The independenceof therecoil
force to thedirection of masstransferis reflectedby thesquaringofj in equation(16). Actually, the
directiononly dependson thevalueoffp, which for all liquid/vaporsystemsis greaterthanunity.

The stresstensorcontribution in equation(15) is expressedin termsof pressureand viscous
stress by:

(¢rij-cr_j))njni=_ (pa+ph-p(v))+(zij-z'!j))njni . (17)

One again refers to the definition of the difference between the liquid and vapor viscous

stress tensors and applies the one-sided assumption, fst = 0, to remove vapor velocity. This yields:

(z ij- r !j)) n jn i = 2tl Vijn jn i . (18)

Substitution of equations (16) to (18) into the original equation for normal stress, equation

(15), yields an expression for surface curvature that accounts for pressure, vapor recoil, and viscous
stress:

},I< = (P(V)-pd-Ph) + J_p (fp-1) + 2pVi,jnjn i . (19)

The third type of jump condition relates the transfer of latent heat and kinetic energy to the

temperature gradient normal to the meniscus. In subsequent comparisons between thermocapillary

and interfacial convection, it is necessary to impose equivalent heat transfer conditions regardless of

the rate of mass transfer normal to the surface. That is, a method of accounting for convective energy

transport in the case of pure thermocapillary flow is required. This is accomplished by expressing the
energy jump in the general form:

q + (kTini-k(V)T_V)ni) = 0 . (20)

The one-sided approximation is applied by factoring out k and assuming that the ratio k(v)/k
0.14 This yields the simplified relation:

q+kTin i = 0 . (21)

q represents the local interfacial heat flux. One can define q in a general way by expressing it
in terms of Newton's law of cooling, that is:

q = h(T-T o) . (22)

q can also be represented more specifically as the sum of latent heat and kinetic energy
transported across the interface, that is:

q = j(L + I [(V.(v)_V/(s))n._2_I [(V/_V.(s))nj2}. (23)
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Note that viscous energy dissipation due to surface stress is ignored. The velocity differences

in equation (23) can al_o be replaced by the definition for mass flux in equation (7). Substitution of
these definitions for q into equation (21) yields two forms of the energy boundary condition, namely:

and
kr:h(r-ro) = 0,

kT +j (L +- J2 (fp2_l)}

(24)

=0. (25)

Additional constitutive relations are required to account for the thermal dependency of surface

tension and the sensitivity of mass flux to temperature along the surface. An equation of state for

surface tension is obtained by treating yas a monotonically decreasing function of temperature.

(26)

7? is the surface tension at the minimum cavity temperature Tt. This formulation is typically

used since dy/dT is negative for nearly all common liquids.

To relate mass flux to temperature, i.e., characterize the mechanism for evaporation and

condensation, one begins with the well-known Hertz-Knudsen relation 49 which relates mass flux to

the difference between the density of the vapor undergoing phase change ptv) and the density of the
surrounding vapor po(V).

f RgTo _ln

j=e_] (p (O_p _v)) . (27)

ptv) is the vapor density at the liquid surface temperature T, while po(O is the vapor density at

To. e is the accommodation coefficient and is a factor representing the resistance to mass transfer.

For a surface free from contaminants, it is assumed to be equal to 1. Other variables in equation (27)

include the vapor molecular weight Mw and universal gas constant Rg. It is assumed that the

saturation density and pressure are solely functions of temperature. Treating density as a linear

function of temperature allows one to express the density difference as:

(T-To)• (28)

From the chain rule:

dp
(29)

Assuming a perfect gas equation of state yields an expression for 3po(V)lOP:

Opt) Mw

3P = RgTo ' (30)
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dP/dT in equation (29) is simplified by applying the Clapyeron equation and assuming that fp >> 1.

This yields:
(v)

dP LPo (31)
dT = TO

Substitution of equations (28) to (31) into equation (27) yields a final relation for mass flux in

terms of the temperature difference between the liquid surface and vapor.

ep _)L [ M W _1/'2

J=_k2-_g] (T-T°)" (32)

The remaining boundary conditions are Dirichlet-type and, apart from scaling, require no

further simplification.

D. Scaling

One now nondimensionalizes and simplifies the governing equations and boundary conditions

by applying different scaling factors. Length is scaled to the pore width D, and viscous scales are

chosen for time, velocity, stress, pressure, and mass flux, TMthat is:

9 2
v Vi" ' t=--f'-t*x i = Dx; , Vi = -_

pl p2 ,

gi = a_go , a ij = "_ i_ ij , P = pv---_2D2P* (33)

These scales are appropriate for a system in which viscosity and surface tension influence the
flowfield. They should also apply in instances where the domain is nonisothermal and interfacial

mass transfer is not too intense. For temperature, one scales the difference T-To to the maximum

difference in the cavity IA71 = IT1-Tol. This yields the relationship:

T= T*IATI+ To . (34)

The appeal in using this definition is that the scaled vapor temperature assumes the same

value of 0 for both superheating and subcooling. With superheating the side wall temperature is fixed

at 7"* = 1, while with subcooling, it is held at 7'* = -1.

Applying the scaling factors in equations (33) and (34) yields the following dimensionless

forms of the governing equations:
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v,,;= o, (35)

_Vi*_t'--'-_ + Vj* Vi,*j+P_i- r _,j-Gra iT* = 0 , (36)

_T* (37)

The two dimensionless parameters arising from the scaling are:

Gr = D 3gfl IATI Grashoff number (38 )
V2

Pr = _ . Prandtl number (39)

Scaling of the constitutive relations for mass flux and surface tension are critical to

formulating a working set of equations. The constitutive equation for mass flux is scaled to

temperature by substituting equation (34) into equation (32) to yield:

where

j_ -- Z __-_ , (40)

fpvTg a [2trRg_ '/2
Rs= eDLIATI _ M w J (41)

The interfacial resistance Rs defines the degree of nonequilibrium (i.e., difference in state

between the liquid and vapor) that can be maintained per unit mass undergoing phase change at a

volatile interface. Rs = 0 corresponds to the quasi-equilibrium limit, where the interfacial temperature
is constant and equal to the saturation value, T* = 0. llRs = 0 corresponds to the nonvolatile case in

which the evaporation mass flux j* is zero.

A dimensionless equation of state for surface tension is obtained by substituting equation

(34) into equation (26). This yields two equations which may be expressed in the single general
form as:

Y= 7t (1-Cr7`*) (42)

where

I_7

Cr ='
Yt (43)

7`* is a corrected scaled temperature whose value depends on the maximum and minimum

temperature in the cavity. For superheating (Tn = 7"1 and T1 = To), T* = T*, while for subcooling (Th

= To and TI = 7"i), 7'* = T* + 1. The Crispation number Cr denotes the sensitivity of surface tension

to temperature. Because it is quite low for most ordinary fluids, several studies have justified neglect

of surface deformation by assuming a very small Cr. Although several researchers, such as Sen and
Davis 24 and Zebib et al., 27 refer to Cr as the Capillary number, the terminology of Strani et al. 26 will

be followed.
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In scaling the normal stressbalance,one sets the hydrostatic pressureat the base of the
cavity to a reference value of 0. The hydrostatic pressurealong the meniscus Ph can then be

expressed as a function of y_S):

Ph = _pgy_S) . (44)

Ph is negative because the body force acceleration points in the -x2-direction. Substituting

equations (40), (42), and (44) into equation (19), and rearranging terms yields the dimensionless

equation for surface curvature:

to* = B °Y(S)*-Ca(Pa-P(V)*) + VrT*2 + 2CaVi,_n p i
1-Cr'l"*

(45)

Previously undefined parameters arising from this scaling are:

Bo = "-e'gD2 static Bond number (46)
_l '

Ca = p v-----_z Capillary number (47)
yl D '

Vr Ca(f;- 1) recoil parameter (48)
- Rs 2

Ca denotes the force ratio between viscosity and surface tension. Although it appears to have

a significant effect on surface geometry, Ca, like Cr, is typically small, particularly for high surface

tension liquids. Note that this dimensionless grouping has previously been referred to as the

Ohnesorge number Oh by Cuvilear and Driessen29 and the nondimensional surface tension number by
other researchers.

For the shear-stress condition, one expands the surface tension gradient by applying the
chain rule:

Oy 0T (49)
Y,i = _gT _x i

Substituting equation (49) into equation (14) and scaling yields:

_'ijnj =-ReT; . (50)

Re is the surface tension Reynolds number and is defined as:

(51)
pv 2

Since the normal gradients of VI* and V2* are interdependent, the condition represented by

equation (50) can only be applied in one direction. That is, the stress conditions in both directions

are mutually satisfied by applying the Neumann condition to either VI* or V2*. If equation (50) is
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appliedto V1 *, a Dirichlet condition for V2* is obtained by substituting equation (7) into equation
(32) and scaling terms"

V2 = _-V1nl • (52)

The equation used to specify velocity along boundary 2, equation (9), is also scaled to yield:

fr; fr; d_*- Vi*nidF* = (V/*-V/(s)*) nfll"* + dt-------_ (53)

The result of scaling the two jump energy equations, equations (24) and (25), can be
expressed as the general relationship:

TTn i = -BIT* (54)

Bi is the effective Biot number of the liquid volume. For the case in which heat transfer is

expressed in terms of Newton's law of cooling, Bi is defined as the convective Biot number, namely:

Bi = Bi c = h__D_D
k (55)

For the case involving latent heat and kinetic energy transport, Bi consists of the sum:

Bi = Bi m+Bi keT'2 , (56)

where
Bim = _sE '

(fp2-1)

Bike = 2ARs3E

(57)

(58)

and

E = klATI
pvL ' (59)

A= D2L
v2 (60)

The rate of latent heat transfer relative to heat conduction is represented by the mass
transfer Biot number Bi m. In a manner similar to Bic, the value of Bim indicates whether heat transfer

is limited by conduction within the liquid (Bin > 1) or mass transfer at the interface (Bim < 1).

The influence of mass transfer and phase change on the interfacial temperature distribution

can also be viewed in terms of the reciprocal product, RsE. The parameter E represents the ratio

between the viscous and evaporation/condensation time scales (i.e., D2/v and pD2L/(klATI),
respectively). Although it applies to both modes of interfacial transfer, E has been termed the

evaporation number by Burelbach et al., TM and it is indicative of the rate of phase change relative to
momentum diffusion in the cavity.

A large value of E signifies a high rate of evaporation and shorter timescale relative to

viscous effects. This is comparable to having a high ratio between the thermal conductivity and
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convectiveheat transfercoefficient for Bio In either case, raising k relative to latent heat transport in

equation (57) or h in equation (55) means that interfacial convection progressively becomes the rate

limiting process for heat transfer.

Interfacial resistance can either augment or restrict the effect of phase change on rate limiting

heat transfer processes. Rs dictates the rate at which vaporized liquid or condensed vapor is ejected

from or deposited onto the interface. Hence a higher rate, reflected by lower Rs, would suppress the

influence of phase change on the temperature profile. That is, the rate limiting effect of phase change
relative to conduction is reduced by increasing the mass flowrate into or out of the cavity. This is

reflected by a higher value of Biot number Bi,n.

The kinetic energy Biot number Bike T*2 represents the rate of kinetic energy transfer relative

to conduction at the surface. Its contribution to the energy jump balance is evaluated by factoring out

Bie from equation (56), that is:

( Bike 11--w=-.Bi=Bi e + t_e T*2 •
(61)

Note that A, which arises in the denominator of Bie/Bite = (fp2-1)/(2ARs2), is extremely large

for most fluids. Consequently, we can safely assume that Bie/Bike -- 0. This conveniently enables one

to use the same linear relationship, equation (54), for both forms of the boundary 4 energy equation.
One now has two definitions for the Biot number at the surface. Both of these are equivalent in terms

of dictating temperature distribution along the interface.

Scaling the governing equations and boundary conditions has yielded 13 dimensionless

groupings based on 14 thermophysical properties and a contact angle constraint on either side wall.

Two of the groupings, Vr and Bike, are immediately recognized as combinations of the other 11. Five

of these remaining 11 (i.e., Gr, Re, Ca, Bo, and Cr) represent ratios between the five principal modes

of force application, namely viscous stress, surface tension, gravity, thermocapillarity, and buoyancy.

Scaling considerations show that only four of these ratios are mutually independent and compatible

with a consistently defined problem. Note that Ca = Cr/Re, which reduces the number of

dimensionless groupings to 10.

All of the remaining dimensionless force groups (i.e., Gr, Re, Bo, and Cr) are dependent on

cavity width. Although the relationship between thermocapillarity and buoyancy can be indirectly

expressed by the relative magnitudes of Re and Gr, no parameter has been defined that directly
relates these effects on purely thermophysical terms, i.e., as a function of their relative sensitivities

to temperature. This is possible because both are expressed as gradients with respect to

temperature. The so-called thermal response ratio is defined:

2= )'_fl (62)
1_T/OTI '

which relates the thermal sensitivity of surface tension to that of density. It is appealing to use /_,

because, like Pr, it is a physical property of the fluid and independent of imposed temperatures and

scaling dimensions. For most Newtonian fluids, it ranges between 0.1 to 0.01, and can be related to

the other dimensionless parameters by:

Gr = BoRe/], (63)
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It wasdecidedto replaceGr with equation (63) in the momentum equation because in most

cases thermocapillarity predominates fluid motion. Note that the group A,Bo = Bod is sometimes

referred to as the dynamic Bond number. 21 Also, to eliminate confusion between Re and the well-

known parameter relating viscous and inertial effects, Re is replaced with the Marangoni number Ma,

defined as:
Ma = RePr . (64)

E. Summary

The theoretical development has produced a mathematical model consisting of the governing

equations and boundary conditions summarized in table 1. Of the five independent variables in this
system of equations, only pressure lacks any specific boundary conditions. Section IV will discuss
how the selected solution approach obviates the need for a pressure boundary condition at more than

two points.

Because the cavity is symmetric, only two conditions are needed to define surface geometry.

One is the contact angle constraint and the other is the requirement that the distance from the

contact line to the cavity base be equivalent to the width.

In the process of scaling these equations, we also obtained a variety of dimensionless

groupings. The ones derived in this chapter and those referred to in other sections of the text are

presented in table 2.

IV. NUMERICAL METHOD

A. Introduction

Except for the complications introduced by the existence of an unknown free boundary, the

aforementioned problem can be readily solved using various numerical techniques. The finite element

method has been selected because of its strength in handling unstructured grid domains and free

boundaries. Although it is possible to structure a numerical solution so that the surface is

determined simultaneously with Vi, Pd, and T, this approach is memory-intensive and requires

manipulation of an extremely large sparse coefficient matrix. The preferred approach 29 35 relaxes the

normal-stress boundary condition in equation (45) and calculates surface position y(S) in an iteration

loop outside the steady-state flowfield solution.

Note that the * notation which signified scaled parameters in section III has been dropped.

Unless specified otherwise, all variable and parameters references in the remaining sections pertain
to their dimensionless form.

B. Finite Element Equations

Finite element equations for the flow variables are obtained by applying the Galerkin method
to derive weak forms of the scaled momentum and energy equations, equations (34) and (35),

respectively. These equations are discretized with respect to time via a semi-implicit Crank-
Nicolson scheme, while continuity, equation (35), is enforced using a SIMPLER-type algorithm

similar to the finite volume-based technique of Patankar et al. 5°
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Table 1. Summaryof governing equations and boundary conditions.

Domain Equations

Vi, i = O

o_ i

"_ + Vj Vi,j+ Pd, i-'_ ij,j-Gra iT = 0

or v_rj l r jj o

1 Boy (s)_Ca(Pd_ P o,))

r = 1-Cr_ +VrT2+2CaVi,jnjni

Description
Continuity equation (equation (35)). Used with

momentum to solve velocity and pressure.

Momentum equation (equation (36)). Used with

continuity to solve velocity and pressure.

Energy equation (equation (37)). Used to solve

temperature.
Equation for meniscus curvature (equation (45)). Used

to solve y(S) when _¢replaced by expression for
curvature in 2-D Cartesian frame.

Boundary 1 Conditions
V1 = 0 Impermeability

V2 = 0 No-slip

T=T1

Description

Isothermal side wall. T1 = 1 (superheating), TI =-1

(subcoolin[).

Boundary 2 Conditions

V1 = 0 Parallel flow

v2- fr, dU4 valueUnif°rmacrossfl°Wmeniscus.(equati°n(53)). Total flowrate matches

T = T1 Isothermal. Same temperature as side walls.

Description

Boundary 3 Conditions
Vl=0

Description

I Impermeability

No-slip

Isothermal side wall. TI = 1 (superheating), Tt = -1

(subcoolin[).

V2=0

T=T1

Boundary 4 Conditions

lYiln j = -ReT i

Description

Thermocapillary stress condition (equation (50)).

1 T
V2=-d-]2 (-_- Vlnl )

Required V2 needed to satisfy meniscus flux condition

(equation (52))..

T, ini = -BiT Robin energy condition (equation (54))

ytS) = 1 Surface Dirichlet condition @ Xl = 0 and 1

dy _s) Surface Neumann condition @ x! = 0 and 1

= tan(_r/2-co)
Note: * notation dropped. All variables expressed in dimensionless form.
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Grou
Bi

Bic

Bim

Bike

no

Bod

Ca

Cr

E

A

A

ga

Table 2. Summary of dimensionless groupings.

Name

Biot number

Convective Biot

number

Mass Transfer Biot

number
.m

Kinetic energy Biot
number

Description

General reference for either Bi c or Bim

Dynamic Bond
number

(equation (54))

Bond number

forces (equation (46))

l_atio of buoyancy to thermocapillary

Formula

Either Bi c or Bim

Capillary number

Crispation number

Evaporation
number

Density ratio

Grashoff number

Thermal response
ratio

Dimensionless
latent heat

Marangoni number

Ratio of effective surface heat transfer

convection to conduction (equation (55))

Ratio of latent heat transport to

conduction (equation (57))

Ratio of kinetic energy transport to

conduction (equation (58))

Ratio of gravitational to surface tension

forces (equation (63))

Ratio of viscous to surface tension forces

(equation (47))

_ hD
k

_ 1
- RsE

(fp2-1)

- 2ARs3_

pgD 2

r
gDZOp/OT

pv 2

- --fff
= Cr/Re

Ratio of thermocapillary to surface l[Oy Itension forces (equation (43)) =-_ _-f IATI

Ratio between viscous and evaporation/

condensation time scales (equation (59))

= CaRe

klATI

Ratio of buoyancy to viscous forces

(equation (38))

pvL

Ratio of liquid to vapor density (equation = p/p (v)
(16))

D3 gfl lArl

Ratio of density to surface tension

thermal sensitivities (equation (62))

Latent heat scaled according to viscous

scales (equation (60))

Ratio of thermocapillary stress force to

viscous forces (equation (64))

7 aplaT

-- P I_yl_TI

D2L

=7

= RePr
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Table 2. Summaryof dimensionlessgroupings(continued).

Grou Name
Oh Ohnesorge number

Pr Prandtl number

Re Surface tension

Reynolds number

Rs Interfacial

resistance

Sv Viscous stress

parameter
Vr Recoil parameter

Description
Ratio of viscous to surface tension

forces 29

Ratio of momentum to thermal diffusivity

(equation (39))

Ratio of thermocapillary to viscous forces

(equation (51))

Degree of nonequilibrium between vapor

and liquid on free surface (equation (41))

Ratio of normal velocity gradient to

temperature at surface (equation (8))
Ratio of surface momentum change to

surface tension (equation (48))

Formula

pv 2

= MalPr

fpvTo 312 '2_rRg] m

- eDLIATI -_W ]
= Br/Rs

SIMPLER requires three additional Galerkin equations for the pressure and velocity

corrections Pa' and Vi', respectively. These equations are derived from equations (35) and (36),

which for two-dimensions, represent a system consisting of three equations and three unknowns.

Because equation (36) is actually two equations, it is possible to derive velocity estimates Vi ° with

an arbitrary value of pressure Pd o which may not satisfy continuity. This implies the existence of

corrections which, when added to the estimated values, mutually satisfy equations (35) and (36),

where Vi = Vi ' + Vi ° and P d = P d' + P d°. Substituting these expressions into equation (36) and

subtracting the momentum equation based on estimated values of pressure and velocity yields an

expression for Vi' in terms of Vi °, Pa °, and Pd':

_V_ _ • O • r O s s •

_-"-i-"{"Vj Vi,j+ V j Vi,j+ V j Vi,j+Pd,i-Vi,jj --- O • (65)

By approximating OVi'/igt as a finite difference and assuming that Vi'at the previous time

step n equals zero, one finds that i3Vi 'l_t = Vi VAt. Substituting this approximation into equation (65)

yields a quasi-explicit expression for Vi'. As an initial estimate, all second-order and nonlinear terms

are neglected, yielding:

Vi' = _AtPa, i . (66)

The continuity constraint is applied by substituting the sum of equation (66) and Vi o into

equation (35), and rearranging terms to yield an expression for the pressure correction that enforces

continuity:

•
Pe,ii = _ • (67)
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With SIMPLER, a moreaccuratePd' is obtained prior to the pressure update. This improved

estimate is derived by invoking continuity with the complete equation for Vi'. Substituting

Vi = Vi' + Vi ° into the continuity equation as before yields the more accurate expression:

1_,.= vi'° , o o ....
-_ -- 2 Vi,j V j, i- Vj V i,ji- Vi,j V j, i + Vi,jj i ,

(68)

The pressure correction calculated from equation (68) is added to the previous estimate Pa °

and used in the next calculation of Vi o. Use of SIMPLER increases the total number of equations and

unknowns from four to six. Note that Pd is no longer a dependent variable in the true sense since it

represents a cumulative sum of Pd' estimates. Also, equations (67) and (68) count as only one

equation.

Algebraic finite element equations for these six variables are obtained by applying the

Galerkin method. 51 First, the momentum, energy, and correction equations are expressed in residual
form:

eft = OV__-----_+ Vj Vi,j+ Pa,i- z oj-Gra iT , momentum (69)

e _ _r vjrj _ T,_ , energy (70)

g/i

EAP1 :_ed,ii__ ,
Pd correction (initial) (71)

e _v = V,.'+AtP_t,i , Vi correction (72)

e AP2_ Pd,ii Vii .....- "-fit+ 2VijVj'i+VjViji+VijVj,i-Vijji. Pd correction (final) (73)

Note, the o-superscript has been eliminated by consolidating the definition of estimated

velocity and pressure, that is Vi = Vi ° and Pd = Pa °. Weak forms of the governing differential

equations Ea are derived by integrating the residuals e over the spatial f_ and temporal _o domains:

fo' Yo foE _ = U((O) W_ed_d_o = U(_o) Sad cp = 0 . (74)

Prior to each integration, the residual is multiplied by test functions that characterize the

dependent variable's spatial variance between adjacent nodes Wa and its change between
successive temporal stations U(_o). Integration of the residuals in equations (69) to (73) over f2

yields the corresponding equations:

foro , )loll= - W/, zonjdF,s_ wy cg + vjv,,j+P_,,-a,r_,tin+ W_(V,.jVj,,)dn (75)
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(76)

Sa_V = fn W_v (V_"+AtPa'i)da ' (78)

fo T, fo ..... ,)S M'2= ziP2" * ' M'2(Vii-2vi,jVj,i-VjVi,ji-Vi,jVj,i+Vi,ji da (79)

The viscous stress gradient in equation (69) is integrated by parts to yield a surface integral

in equation (75) that represents imposed stress along the meniscus. Applying the same approach to

equation (70), T jj is integrated by parts to obtain a surface integral in equation (76) that specifies

the temperature gradient normal to the boundary. In both pressure correction residuals, equations

(77) and (79), the equation order is reduced by integrating Pa',ii by parts, and a surface integral is

obtained by containing the normal gradient of Pa'. Since Pa' = 0 throughout f2 to satisfy both

continuity and momentum, Pa',i must vanish along all boundaries. Note that no Neumann tensor

arises in equation (78) from integration of equation (72).

Each flow variable and its associated gradient in equations (75) to (79) are discretized as a

product of the nodal value and an interpolation function that characterizes its variance over the
element domain.

Vi-"fY_flVfli, Vi,j=_fl,jV_i,

P = HpP_ , P,i = I'I_,iP_ , (80)

r=o rp, r,= o .

By decoupling meniscus geometry from the transient solution of II,-, Pa, and T, grid geometry

can be treated as static with respect to the flowfield, and the interpolation functions depend solely on

xi. Note that a coupled and transient determination of meniscus geometry would require an

accounting of grid convection due to interfacial deformation.

An example of a typical finite element domain consisting of 25 by 20 = 500 quadrilateral

elements is shown in figure 5.

The different nodal configurations for these elements are illustrated in figure 6. The global

coordinates xi are assumed to vary quadratically with respect to the natural coordinate frame {1 ({)

and _2 (7/) centered at each element. For incompressible problems of this type, the traditional

approach is to employ interpolation functions for velocity (O/_) and temperature (0/3) that are one

order higher than pressure (rI/_).
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To accommodatethe ViVi'di term in the SIMPLER pressure update, equation (79), one

follows the approach of other researchers and employs a quadratic variance for O_ and Off, and a

linear variation for I-I#. This worked well in all regions except the meniscus interline. Here,

thermocapillary stress and interfacial mass transport are greatest and cause substantial pressure

gradients. Unless the corner elements are made sufficiently small, this abrupt change in pressure is
inaccurately applied across the entire element and over-influences the velocities at adjoining nodes.

A similar problem with temperature was encountered when analyzing high Bi (>_102). In this case,

the second-order function is incapable of handling steep temperature gradients near the wall.

To correct this problem, more complex formulations for the pressure and temperature

interpolations are used. Computer storage requirements are reduced and physical consistency is
maintained between Pa and Vi by employing higher order interpolations in the comer and mixed order

functions in the side wall and meniscus regions. This enables application of the standard first- and
second-order formulations in the interior, but requires the seven element configurations shown in

figure 6. A summary of the derivation of interpolation functions for these elements is given in

appendix A.

For pressure, a quadratic approximation (i.e., type 3 in figure 6) is applied at the two corner
elements, which have a nine-node element domain and coincide with the velocity interpolation. In the

interior, however, a first-order variation (type 1) is retained to preserve the physical relationship

between pressure and velocity. This approach requires the use of mixed order elements (types 2a

and 2b) along the meniscus and side walls to ensure consistency between the number of local node

contributions and global node equations. As detailed in appendix A, the type 2a function is applied

along the meniscus, and is formulated at each of the six local nodes from the first and second-order
Lagrange polynomials in the _1 and _2 directions, respectively. Alternatively, the type 2b

interpolation is applied along the side walls, and is the product of the second and first-order

Lagrange polynomials in the _1 and _2 directions, respectively.

A similar approach is taken with temperature. Originally, third-order and mixed third/second-

order functions were investigated, but difficulties with convergence along the meniscus were
encountered. Use of fourth and combined fourth/second-order interpolations, however, proved

successful, and closely followed the methodology outlined for pressure.

The Wa test functions in equations (75) to (79) assume the same order as the interpolation

associated with each equation's dependent parameter. Therefore, Wa M = Wa AV = t_a, Wa ,E = Oa, and

Wa, AP1 = Wa AP2 = 1-Ia. Substitution of these definitions into equations (75) to (79) yields general

expressions for the spatial residuals:

3V fli 2 3 4 5 6 M

SaM = Mlaz _ + (MaTpjVrj+M_)Vpi+MajpiVzj+M_iP_-GraiM_T_Gai ,
(81)

OT,0 2 3 E
(82)

SaAPI 1 ' _tt 2= P_P# + Pa#iV_i , (83)

, , ,= MazVzi + At MaziPp , (84)
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where
sAP2 1 " ___ 2 3 ' " 4 "= e_ep + e_iV_i-e_#jriVpi(2Vrj+Vrj)-P,_13rijV_jVr, , (85)

(86)

' LEaTpj = 0 aOrO p,jd_"2 , M2rM = fta O _O rO _'Jd_ '

f_ 3 f_ 0 a jO E jd_-'2E _B = 0 u,j 0 p,jd_ , M_ = , , ,

4Majfli = 0 ctdO fl,id_-2 ,

pl = f_ i-lu,il-i fl.id_ , Marl i = O al-I p,idf_ ,

P_flj_,i = f_ 11 uO fl,jOr, jd_"2 , G a_ = fr $ _ r on jdF .

P2prij = fn I'I aO flO r,jid_"_ ,

The integral associated with Vi, jji in equation (79) is ignored, since it is impossible to

discretize a third-order derivative using a second-order interpolation function. However, neglecting

this term will only reduce the rate of convergence and should not alter the final solution since Vi' ---) 0

near the proper value of pressure. All tensor values, except aai M and aa E, are calculated using

Gaussian quadrature in two dimensions. Because of the fourth-order interpolation in the E-tensor

forms, a five-point procedure is employed.

The momentum and energy spatial residuals equations (81) and (82) are discretized with

respect to time by integrating the product of U(tp) and Sa in equation (74) over 0 < tp < 1. _ois the

normalized time increment and is defined as q)= t/At. Each nodal value of velocity Vfi and

temperature T/_ (which are both generally expressed as Z/_) is discretized between the temporal

stations, n and n+l by Z# = O,,Zpn+On+lZBn+l, where On = 1-tp and On+l = tp. This definition yields

the dependent variable forms OZp/Ot = (Z#,,+I-Z#,,)/At, Z# = (1-tp)Z/_n+tpZ/¢,+l and ZrZ p =

(1-tp)ZrnZ#n+tpZrn+lZon ÷1. Note that VaiV_j and VaiTfl are assumed to vary linearly with time,

which is reasonable if the time step is small. These forms are substituted into equations (81) and
(82). After integrating over _o, one divides both equations by folU(_o)dtp and defines a temporal

parameter g such that:
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fo I U( q_)dtp

(87)

This yields the following linearized algebraic equations for velocity and temperature at n+ 1:

1 " " (M2yflJWI/] g;: 1 I_C)At[MbpYg l] ., . . ( l

5 6 + AtGa i ,_AtM_roiPfl+AtGra.r11/laOaaB( (1-_')T/_ / M (88)

EaP +_At i 1 3 /i

1 Ectyflj 7J

T/_+l= Eatl-(1-()At + 1 E 3
T_+AtG_ . (89)

To employ the Crank-Nicholson method, one sets U(q_) = 1 which yields g = 1/2. Finite

element equations for Pa' and Vi' are obtained by setting the spatial residuals in equations (83) and

(84) equal to zero.

The surface stress condition is embodied in the Neumann tensor acti M, and is applied along

the elements adjoining surface 4 (i.e., the corner and meniscus regions in figure 5). Note that the
velocities on all other boundaries are Dirichlet-type. A finite element expression for Gai M is

obtained by substituting the tangential stress condition, equation (50), into the definition of Gai M in

equation (36):

G _ =-Re fr 6.Tdr. (90)

There are several ways to discretize the temperature gradient along the boundary. One is to

assume T,i = O*/3,iT_ and treat 0"13 as a one-dimensional, second-order interpolation along the

element surface. The main advantage with this is that the integral SrCb*aO*/3,i is an explicit function

of normalized surface position _, surface length l(e) and orientation si. This approach works well if the

surface is horizontal or vertical, and the gradient acts in either the Xl- or x2-direction. With a curved

interface considerable error is introduced because only three temperature values are used to express

the gradient in two directions. An alternative approach is to treat 0"/3,i as two-dimensional and

include contributions from all element nodes.The integration is carried out while holding the edge

corresponding to _2 = r/ = 1 constant. First, the discretized form of equation (90) is expressed as a
sum of individual element contributions:

_A 1 T(e>^ (91)_m..,a_= -Re a_NMi_tM _Nct ,
e=l
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where

* 1 = fr ¢_Ce)_ (e) ar'Ce)_"_ NMi "_VN _' M i t_ l "
(e)

(92)

E4 is the number of elements along surface 4, and T(e)M are local node values of temperature.

M is summed over all local nodes. The surface test function _*(e)_, is expressed as second-order

with respect to _:

[ ]
[ .

[ ]
(93)

The surface differential dF(e) is also expressed in terms of _ by dF(e) =(l(e)/2)d_. Note that

O*(e)M, i is merely the derivative of the temperature interpolation O(e)M,i at r/= 1.

_t),i= 0 _t)i),7__, . (94)

Equation (92) can now be expressed in the form:

fil _ l(e) fl
-- _ j_ 4/_)(_ ) 0 (e> _ A,g (95)NMi M,i) q = Iu

The integration in equation (95) is performed most efficiently by means of one-dimensional

Gaussian quadrature where the expression is approximated as:

l (e)
'==,=T , wA' ¢,)° ,,'=l) ' (96)

w r is the weight coefficient corresponding to the point index r. ¢_*(e)N(_r ) and O(e)M,i(_r,O=l)

denote the abscissae evaluated at each of the n Gaussian points. For this summation, a five-point

quadrature is again employed, i.e., n = 5, since the order of variation for temperature is fourth-order
in the corners and surface.

Surface integrals are also used to balance flow through the cavity and specify the Dirichlet

condition for V2 along surface 2. One takes the approach of relaxing the normal stress boundary

condition and holding the surface fixed Vi_ s_ - 0. Integration of the scaled expression for mass flux,

equation (40), over surface 4 yields the scaled total mass/volumetric flow J (i.e., throughput) in the

pore:

J=-_ fr TdF . (97)

J is approximated by descritizing T in terms of o*(e)M and expressing the integral as a

summation over surface 4 element contributions, that is:
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where
J=_ss _ A2 7,(e)

e_= l °*_ M I M ,

"2 fr b _t)dF (e>_'_ m = (e)

(98)

Along the corner elements, a fourth-order interpolation is applied and the summation occurs

over all five surface values of temperature. On the remaining meniscus, a second-order variation is

applied to yield:

* 2 I (e)
I'_M=-_-0-[7 32 12 32 7] r , Fourth-Order Variation (99)

* 2 l (e)

_u ='-if'[1 4 1] r . Second-Order Variation

The rate in equation (97) is set equal to the flux integral on surface 2 by:

J = fr2 V2n2dF " (100)

Recall that V1 = 0, consistent with the assumption of parallel flow. In addition, V2 is treated

as a constant (uniform flow) but is assumed to vanish at xl = 0 and 1 (no-slip). Noting that n2 = 1,

V2 is discretized in terms of O*(e_M, and a second expression for J is obtained.

Axl V2 [ 10+6(E2-2)] ,
J= 6 (101)

where Axl represents the individual element lengths along surface 2, and 112 is the velocity at each

node. Note that E2 is the number of elements along surface 2. Setting equation (101) equal to

equation (98) yields an expression for V2 which is treated as the Dirichlet boundary condition at each

temperature iteration.

3J (102)
V2- AxI(3E2_I) •

The Robin boundary condition for temperature, equation (54), is applied using the definition of

G,] r in equation (86). The temperature gradient in Ga E is replaced with equation (54) to yield:

1"bordr
--'_--_ Jr,

(103)

Temperature is again discretized by O*(e)M to yield a finite element expression for the

integral:

fr, b _Tdr4 = _ A3 "r_,}^e= 1 _'_VM"M _,Va , (104)
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where

N V MUi • (105)

Removing the temperature gradient in equation (103) eliminates the need to apply an

interpolation function based on all element node contributions. Rather, a second- and fourth-order

interpolations are applied with respect to the naturalized coordinate 41 coincident with the surface.

Integration of the interpolation product in equation (105) then yields the matrices:

126!] second-order (106)

[
* 3 1e ]
f_NM= 5--_ l

292 296-174 56-291

- 1,792 -384 256 56 /- 1,872 -384 -174 .

-1,792 296 /
- 292]

fourth-order

C. Free Surface Solution

With moderate to large contact angles (i.e., o2 = 15°-90°), y(S) can be easily calculated using a
one-dimensional finite difference or finite element representation of equation (45). Such an approach

is difficult with small contact angles because of the high gradient (Neumann condition) at the wall.

An alternative is to transform equation (45) into an integral equation by treating o_ and surface

position s as dependent and independent variables, respectively. This approach has been applied to

purely hydrostatic configurations, 52 53 and can be extended to include the effects of dynamic pressure,

velocity, and interfacial temperature.

First, a new coordinate system (x',y') centered at the base of the meniscus where x' = x1---0.5

and y' = y(S)-yo(S) is defined. _ is related to y(S) by y(S) = yo(S) + _0x' an otdx' and y(S),x = tan _. These

definitions are substituted into equation (45) to obtain:

re
_,-C+Bo | tan ot dx"

tc = 1-D ' (107)
J0

fp-1
Z = Boy_S)+Ca(P(v)-Pao) + _ To2+2V_.,jnjni

Rs 2
(108)

where

C = Ca[Apa (fo -1) A(T2)_2A(Vq)njni]gs 2 , ,

D = CrT ,
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and
= P.-Pdo ,

a(r ) = r -Vo ,

A(Vi,j) = _i,j- Voi,j •

C and D are derived from the steady-state flowfield solution and are expressed as functions
ofx'. Between the surface nodes at which flowfield data is available, T, Vi, and Pd in equation (108)

are interpolated using the same order as their element-level variance. Equation (107) is expressed

in a form where Z corresponds to the curvature at the meniscus center-line. Consequently, the

curvature at other points along the surface is a function of Z and the change in pressure, temperature
and velocity relative to the center-line values, To, Voi, and Pao.

For a two-dimensional meniscus, only the radius of curvature _¢ in the x'-y' plane is con-

sidered. The well-known expression for I¢ in this case 53 is:

1 d ([ l +(y._,) 2]-'/2} (109)
I,== y_)dx dx

Upon substitution with the expressions for y(s) and y(S),x, equation (109) becomes

t¢ = cos ct(Oct/Ox). For moderate to large contact angles, this equation can be used with equation

(107) to solve ct versus x' using a combined finite difference-integral expression. Convergence

problems occur at low contact angles due to the rapid increase in the tangent term near the wall. This

problem is corrected by using the surface distance s, rather than x', as the independent variable, s is

introduced into the formulation by noting that dx'/ds = cos ct and dy'/ds = sin ct. Substituting these

expressions into the two or-dependent terms in equation (107) yields i¢ = _ctlOs and Sox' tan ctdx'=

j'oSsin ctds. The transformed expression for equation (107) becomes:

E-C+Bo sin ctds

Oct= (110)
0s 1-D

Equation (110) is expressed in numerical form by applying difference and integral approxima-

tions for 0_0s and fos sin ctds, respectively. The entire surface extending from x'= -0.5 to x' = 0.5 is

solved by applying the shooting method to each half of the meniscus. The objective is to determine a

Z that yields the specified contact angle 09 at Ix'l = 0.5. At x' = 0, ct = 0 is set, a value of E is

assumed, and cti is calculated at successive steps along the contour until Ix'l > 0.5. A first-order

approximation for Oct/_s suffices in flat regions of the meniscus, but becomes less accurate towards

the walls. Computational precision in this reg!on is improved by making the step size As = si-si-1

extremely small (-10 -4) and by applying Simpson's rule to obtain second-order approximations of

the derivative and integral. The first and second-order accurate forms of _)_0s are:

Oct = cti-cti-1 first-order (111)
OS Si--Si-I '

0__.aa= 3ct i-4ct __l+ct _-2 second-order
0s 2As '
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where tzi and oq_l are the values of a at si and si-l, respectively. Also, a backward difference form of

3otl_s has been used for the second-order expression. Noting that .[os sin ads in equation (110)

represents the y' value at step i (i.e., Y'i), the integral is expressed as _os sin ads = y'i-1 + Ay'i,

where Y'i-1 is the y' value calculated from the previous iteration and _os sin ads is the value of the

integral from i-1 to i. The trapezoid and Simpson's rules are applied to derive first- and second-

order approximations for Ay'i, respectively:

Ay I = (si-si-O (sin t_i_ 1 + sin tx i) first-order (112)
2

Ayi= (sin ot i + 4 sin _ + sin tXi_l) . second-order

Y'i-I is the sum of the interval integrals calculated from previous iterations:

n_2 t
y/'l= Ay,, . (113)

The angle t_ in equation (112) is the value of a evaluated midway between si and Si-l. It can be

expressed in terms of the angles evaluated at i, i-1 and i-2 by expanding _, into a Taylor series

about Oq_l. Ignore terms higher than second-order and approximate the derivatives using center

differences about c__1 to yield a second-order accurate expression for (7:

= ½ (3_i+6Cti-1-0_i-2) . (114)

Substitution of equations (111), (112), and (114), into equation (110) yields the following

nonlinear equations for o_i at each contour integration step:

1 [ _--C+B°Y'i--l)As 1c_i = °t,-1 + "i-S-'_ / BoAs 2

[+ _ (sin oti_ 1 + sin o_i)
first-order (115)

4t_ i_l-Ct i_2

°_i= 3 +
l [2ff'o-C+B°yi-1)As ][,. sin, +sino,,,

second-order

After each iteration, x'/is calculated from:

= + (cosa ;+cos ,X£

'-X' "_x t - ___+ (cos o_i+ 4 cos t_ + cos a ___).

first-order

second-order

(116)
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In most calculations,the final x'i-estimate overshoots the length constraint (i.e., Ix'l > 0.5). A

cubic approximation of si versus x'i based on si, si- 1, si-2, and si-3 is used to interpolate a final Asi

that yields Ix'l = 0.5. This value of Asi is used to determine a final txi and contact angle estimate o9i =

_2-t_i. If ogi fails to match, within a specified tolerance, the desired value of o9, E is adjusted, and the

contour integration is repeated. If o9i > co, then E is increased, while if o9i < o9, it is decreased. The

new estimate of E is obtained using a simple bisection algorithm, which enables accommodation of

large positive and negative curvatures at the center-line.

In the actual procedure, one only needs to calculate one side of the meniscus since the

geometry and flowfield are symmetric about x' = 0. However, tlie same general approach could be

applied to unsymmetrical problems by shooting the solution to the desired contact angle and treating

and the final x'/-estimate as the independent and dependent variables, respectively. The iteration

would continue until the sum of x'/-estimates on both sides were equal to 1.0. The meniscus center

would then be adjusted until the final x'i-estimates coincided with the side walls.

D. Summary

The equations and algorithms outlined in this section serve as the basis for the Combined

Interfacial Convection (CIC) computer program, which was used to obtain the results in sections VI,

VII, and VIII. A brief description of the program, including its input/output format, subprogram

structure, key variables and general capabilities, is provided in appendix B. A complete listing of the

CIC program module and its associated subprogram elements is given in appendix C.

In the CIC code, calculation of meniscus geometry is the outermost iteration in a five-loop

flowfield solution procedure. The first (i.e., innermost) loop determines a velocity field that satisfies

equation (88) based on an estimated pressure distribution. The second loop (i.e., SIMPLER

algorithm) adjusts the velocity and pressure field by solving equations (83) to (85) in which S_I =

Soti AV = Sa ,AP2 = 0. Once convergence is established for Vi and Pal, the third loop computes the

temperature field using equation (89). In the fourth loop, the time step is advanced to steady-state,

and temporal convergence is checked. The criterion is that the variables vary no more than 0.01

percent from their values at the previous time step.

In the velocity and SIMPLER loops, the dynamic pressure is fixed Pcl = 0 at the two comers

at the base of the pore (i.e., lower left and right-hand corners). By separating pressure from the

stress tensor and restricting application of Green's theorem to the viscous stress tensor in the weak

formulation of the momentum equation, one eliminates the need to specify pressure at the other

boundary nodes.
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V. SCALING ANALYSIS

A. Introduction

The finite element equations derived in section IV provide the basis for determining the

velocity, pressure, and temperature within the domain in figure 4. To make such an investigation

physically relevant, one ascertains via parametrics the magnitude and sensitivity of the principal

dimensionless groupings identified in section III over a range of thermophysical properties, pore

widths D, and superheating/subcooling limits tATI. This is necessary in order to identify the

parameter ranges representative of pores with 1 I.tm < D < 102 I.tm and 10 -1 K < IATI < 1 K. Using

the properties for four fluids commonly used in capillary systems as a reference (table 3), a modified

parameter value, in which D and IATI have been factored out, is calculated for each fluid and

compiled in table 4. The minimum and maximum values for each modified parameter define an

approximate order of magnitude range for the thermophysical variance of each dimensionless

grouping.

To evaluate parameter sensitivity to pore size, one considers a range of D from 10 -2 I.tm to

104 I.tm. Although 1 p.m represents a reasonable lower limit for most fine mesh screens, porous
surfaces and wicking structures, 10 -2 lam is selected to broaden the range of study. In addition, 10 -2

).tm generally represents the upper limit at which long-range intermolecular forces between the liquid

and solid begin to influence surface morphology. It is assumed that these forces can be accounted for
on the macroscopic-level by assuming a fixed contact angle between the meniscus and side wall.

The upper bound of D, 104 l.tm (= 1 cm), is arbitrarily defined as a maximum, since characteristic
dimensions in which D > 105 t.tm (= 10 cm) fall more in the category of a small container and out of

the size range of this study.

Table 3. Fluid properties.

Property H20 Ethanol
Tsat (K)

Pl (kg/m3)

Pv (kg/m3)

tal Ocg/(m-s))

I.tv (kg/(m-s))

k l (W/(m-K))

kv (W/(m-K))

Cpl (J/(kg-K))

Cp v (J/(kg-K))

Otl (m2/s)

373.1

9.59xi02

5.98x10 -L

2.83xi0 -4

1.29x10 -5

6.82x10 -l

2.51 xl0 -2

4.21 xl03

1.89x103

1.69x10 -7

351.7

7.89x102

1.49

3.72x10 -4

1.08x10 -5

1.71xi0 -l

2.30x10 -2

2.44x103

1.69xi03

8.88x10 -8

Ammonia R- 114
239.8

6.83x102

8.90xi0--I

2.69x10 -4

9.00x10 -6

5AgxI0 "q

2.13x10 -2

4.47x103

2.18x103

1.79×10 -7

276.9

1.52x103

7.83

5.06x10 _

1.04x10 -5

9.23x10 -2

9.84x10--3

1.00xlO 3

6.34x102

6.05x10 4

(m2/s)

L (J/kg)

M w (kg/kgmole)

y (N/m)

I dy/dT] (S/(m-K))

:p (irK)

2.22x10--5

2.26x106

18,02

5.88x10 -2

1.94x10 -4

7.72xI0 _

Values at 0.1013 MPa.

9.16x10 -6

8.79x10 s

46.07

2.00xlO -2

9.69x10 -4

l.lOxlO-3

1.10xl0 --5

1.37x106

17.03

4.24x10 -2

3.26x10 -4

2.45x10 -3

1.98x10 _5

1.36x10 -s

170.94

2.57x10 -2

1.15x10 -4

1.78x10 -3
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Parameter

Table4. Dimensionlessgroupings--factoredform.

H2O Ethanol Ammonia R-114 Range
Yo
fk

Pr (liquid)

MaI(DAT)

Bo I(D2 a)

Bicl(Dh)

BielO

RsDAT

Cr/ A T

AID 2

Bike/(O 3AT 2 )

Vr/( D A T 2 )

Grl(aD 3AT)

CaD

1.60x103

3.68x10 -2

4.58x10 -2

1.75

2.34x10 -1

4.06x106

1.60xlO 5

1.47

1.15x107

8.13x10- 5

3.29x10- 3

2.60x1019

8.63 xl01

3.44 x102

8.72x10 lo

1.42x10 -9

5.30x102

1.35x10 -1

2.90x10 -2

5.31

2.27x10 -2

2.93x107

3.87x10 s

5.85

3.03x107

6.31x10- 5

4.84x10- 2

3.96x10 lg

2.70x102

1.16xlO 3

4.86x10 lo

8.77x10 -9

7.68x102
3.89x10 -2

3.35xi0 -2

2.19

3.19x10 -1

6.76x106

1.58x105

1.82

1.48x107

4.54x10 -5

7.69x10- 3

8.85x1018

2.39x102

9.29x102

1.61x1012

2.50×10 -9

1.94x102

1.07xlO -1

2.04x10 --2

5.51

3.97x10 -1

3.76x106

5.81 xlO 5

1.08x101

1.96x107

3.82x10- 5

4.48x10- 3

1.23x10 TM

2.05 x102

8.68x102

1.57 x 1011

6.57×10- 9

102 _ 10 3

10-2 _ 10-I

10-2 _ I0q

I _-_I0

i0-2_-.>I

I(Y5 _ I0g

1o5_ lO6

I _---)lO

lO7 _ lO8

10 -5 _ 10 4

10 -3 _ 10 -1

1018 6-_ 1019

102 _ 10 3

102 _-> 10 3

101o t-._ lO II

10- 9 _ 10 .-8

The maximum superheat AT that can be sustained without causing nucleation depends on the

fluid, contact surface roughness, and pore width. For the size range considered here, a bound of

10 -1 K to 1 K seems reasonable. However, to emphasize the effect of larger superheats, which are

encountered with thin films, an upper limit of 10 K is assumed.

B. Meniscus Solution

First, the parameters arising from equation (45), namely Bo, Vr, Cr, and Ca are examined. For

the purely static, saturated case (Pal = Vi = T = 0), the terms containing Ca, Vr, and Cr vanish leaving

an expression dependent solely on Bo. The sensitivity of surface morphology for this case is

illustrated in figure 7 which shows the left half of the meniscus surface for different values of Bo. The
lower limit, Bo _ O, yields a constant-curvature interface, which is virtually circular for Bo < 10 -I.

With larger Bo, the meniscus must flatten at the center-line to accommodate the increasing

curvature towards the side walls. At the upper limit, Bo --4 oo, the interface becomes flat, and

curvature in the interline region is practically indiscernible.

Heating or cooling establishes a temperature and velocity distribution along the surface, and

requires the consideration of dynamic pressure, vapor recoil, and surface tension variation to solve

equation (45) and its numerical counterpart, equation (110). Because the flow variables are scaled

with viscous timescales, the influence of dyn.amic pressure is dictated by Ca which relates viscous

stress to nominal surface tension. The greatest variation in Pa occurs in regions of high velocity

gradient, such as the side wall and meniscus interline. A sharp change in Pd is expected at the

interline followed by a somewhat constant distribution in the center of the pore. Since the value of Pa

can be either positive or negative, the surface Pa distribution may either offset or reinforce the
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Figure 7. Meniscus geometry for static isothermal pore.

influence of Bo on curvature. From a physical standpoint, a positive Pa in the x'-direction would

oppose action of the imposed acceleration and hydrostatic pressure, causing higher curvatures in the

middle of the meniscus. The converse situation would hold if the pressure gradient was negative.

The effect of vapor recoil is embodied in the term containing Vr. The term is always positive,

since Vr > 0 and T 2 > 0. This indicates that the recoil force from vapor ejection or impingement
always acts in the -x:-direction and augments the contribution of hydrostatic pressure on curvature.

Because the recoil term is proportional to T2, this effect is more pronounced at the side walls, where

the scaled temperature IT1 is highest. To accommodate the increasing curvature towards the side

wall, a lower curvature is required in the center to maintain equilibrium. This causes the surface near

the side wall to appear depressed relative to the center. The magnitude of this depression depends
on Vr and the surface temperature distribution. It is also possible that for high values of Vr the

equilibrium interface may assume a negative curvature and bulge upwards in the middle of the
surface.

Thermally induced surface tension variation is represented by the denominator of equation

(45). Cr arises from expressing ),as a linear function of temperature. Although Cr is ordinarily quite

low up to moderate levels of superheating/subcooling, at high IATI's it can have an appreciable effect.

For a typical fluid (0 < Cr < 1), heating (T > 0) decreases surface tension and causes an increase in

curvature towards the side wall, similar to the recoil term. At higher temperatures, the curvature

must increase to preserve equilibrium and offset reduced surface tension. With cooling (T < 0), the
opposite trend occurs and the curvature is maximized at the center, which is manifested as a surface

depression in the middle of the cavity.

Plots of the upper and lower thermophysical ranges of Bo, Cr, Vr, and Ca versus D for IATI's of

10-1 K and 10 K are shown in figure 8.
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Figure 8. Normal stress-related parameters.

Bo and Ca, which characterize the influence of hydrostatic pressure, viscosity, and bulk

surface tension, are independent of IATI and exhibit nearly opposite functional dependence on D

(i.e., Bo _ D 2 and Ca o_ D-l). This implies the existence of a capillary-dominated regime at small

characteristic dimensions (D - 1 gm) where Ca is large relative to Bo and the velocity and dynamic

pressure terms in equation (45) influence surface morphology. Depending on the value of superheat,

Vr and Cr may also affect the geometry. Although Vr is proportional to Ca, it also varies inversely

with the square of Rs (where Rs ,,_ l/D) which means that Vr o_ D. At low AT, both Vr and Cr have a

minimal effect on morphology in the capillary regime. However at higher superheats (AT= 10 K),
both can overwhelm viscous effects and dictate interface behavior.

At higher characteristic dimensions (D - 104 l.tm), Bo predominates, and one can effectively

ignore contributions from dynamic pressure. At low superheats, the effect of vapor recoil and surface
tension variation are also small, and one expects the meniscus to be governed entirely by

hydrostatic pressure. At higher superheats, the effect of vapor recoil becomes extremely important

and can compete with hydrostatic effects. Since Cr < 1, its contribution will be small for large D.

C. Velocity/Pressure Solution

Solution of velocity and dynamic pressure requires the parameters in equations (36), (50),

and (52). By recasting Re in terms of Ma and Pr, and fixing Pr = 1, one obtains the three parameters

Gr, Ma, and Rs. Gr represents the sensitivity of density to temperature and dictates the magnitude of

buoyancy, while Ma represents the sensitivity of surface tension to temperature and dictates the

magnitude of thermocapillary stress. Rs arises from the constitutive expression relating mass flux

and surface normal velocity to temperature. To maintain consistency with the definitions of Ma and

Gr, the sensitivity of interfacial mass transfer to temperature is expressed in terms of 1/Rs.

The sensitivity of Gr, Ma, and l/Rs to D and AT are shown in figure 9. Note that these

groupings exhibit the same proportional functional dependence on AT. One finds that the different
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functional behaviorsof Ma and Gr on D divide the velocity solution into three types of regimes. The
thermocapillary regime occurs at D < 103 l.tm where Ma >> Gr. In this region, velocity is dictated by

surface tension variation and, to a comparable extent, the sensitivity of llRs to temperature. The

influence of Gr (which follows the same functional behavior as Bo) is essentially nonexistent. Note
that llRs and Ma exhibit parallel trends with respect to D and AT, which would confirm the

competition observed by Chen et al. 41

106

102_ _s

10-1
10 4

Pore Width (I,tm)

Figure 9. Momentum-related parameters.

Extrapolating the trends in figure 9 to larger pore widths indicates that the regime where

buoyancy forces predominate over thermocapillary and evaporative effects occurs at D > 105 I.tm.

Between this point and the upper limit for pure thermocapillary flow (D < 10 s _tm), there exists a

regime where buoyancy and thermocapillary forces compete. Here, the forces can either augment or

offset each other depending on the orientation of the acceleration field and locations of applied

heating and cooling.

D. Temperature Solution

The complete temperature solution primarily involves the boundary condition, equation (54).

For the case of two isothermal side walls, one expects a large change in temperature near the side

wall followed by a more uniform distribution in the center of the pore with higher Bim. At extremely

high Bim, the scaled temperature only a short distance away from the wall will be negligible

(i.e., T _ 0), and thermocapillary effects will concentrate at the walls in a region where there is a

notable temperature change along the surface.

The relative sensitivity of the two parameters in equation (54), Bi,n and Bike, is shown in

figure 10. Bim increases linearly with D from 10 at D = 1 l.tm to 106 at D = 104 lim. The functional

variation of Bike with respect to D and AT appears to support the original assumption of ignoring this

term in the Neumann condition for temperature. Although Bike varies linearly with D 2 and AT, its

magnitude is so low that it never contributes to interfacial temperature. The trend in figure 10

suggests that it may become important only at characteristic dimensions significantly greater than

the upper limit of this study.
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E. Summary

In this section, the parameter ranges appropriate for studying 1 _m to 10 2 l,tm wide pores

subjected to superheating/subcooling levels between 10 -1 K and 1 K have been established. It is
seen that Gr and Bo become vanishingly small in this size range which implies that buoyancy and

hydrostatic effects can be ignored in the problem. The key parameters needed for solution of velocity
are Ma and Rs which assume the ranges: 10 -1 < Ma < l0 3 and 10 -1 < Rs < 10 3. For calculation of the

meniscus surface, Cr can range from l0 -n for the low value of superheat/subcooling to 10 -1 at 1 K. A

contribution is also expected from Ca which varies from 10 -2 tO 10 -5 . For temperature, one sees that

Bi can vary from 1 to 104 over this range.

VI. PORE FLOWFIELD--FIXED SURFACE

A. Introduction

The CIC program described in appendix B and listed in appendix C is first used to investigate

the flow and temperature fields in the vicinity of a fixed circular meniscus. Evaluating such a domain

is equivalent to considering a gravity-free environment, and ignoring the velocity, pressure, and

temperature terms in the normal stress balance. In a one-g environment, this assumption is probably

inappropriate, since the pore length scales for which Cr and Ca vanish (D > 102 ktm) yield increasing

contributions from Bo and hydrostatic pressure. However, in microgravity with moderate dimensions,

one would expect to find situations in which such an assumption was valid.

Investigation of a nondeforming domain is useful for understanding how Ma, Rs, and Bi

mutually influence convection, heat and mass transfer, thermocapillary stress, interfacial

temperature, and circulation. The effect of contact angle 09 should also be examined because, as
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Kamotani and Platt3s showed, highly wetting liquids incur different stress distributions and
circulation intensities than a flat surface.Obtaining referencesolutions for interfacial temperature,
pressure,and velocity also enablesevaluationof thefirst-order influenceof Ma, Rs, Bi, Ca, and Cr on

surface morphology.

In this section, four regimes are examined: (1) the basic state, (2) pure evaporation and

condensation, (3) subcooled and superheated thermocapillary flow, and (4) combined mode

convection. Although liquid motion is ignored in the basic state, this case is important since it

reveals the underlying influence of Bi on domain and interfacial temperature. Since the boundary

conditions for surface velocity and thermocapillary stress are expressed as functions of T and OT/Os,

the basic state interfacial temperature yields insight regarding the driving mechanisms for convection

within the cavity. Furthermore, the temperature distributions of the three convective regimes may be

viewed as departures from the basic state.

With pure evaporation and condensation, the tangential stress is °assumed to be vanishingly

small by setting Ma = 0. The entire velocity field is driven by the mass flux across the meniscus

which is dictated by Rs and surface temperature. In the case of pure thermocapillary flow, the

resistance is set to a large value (Rs = 103) that effectively removes the normal component of

velocity at the interface. The flow structure is dictated by Ma and the surface temperature
distribution. In combined flow, one examines the simultaneous effect of Ma, Rs, and Bi, where Ma > 0
and Rs < 103.

B. Basic State

In the basic state, heat transfer between the pore boundaries occurs solely by conduction. To

examine this regime, one sets Vi = 0 and solves the steady-state diffusion equation for temperature

T,jj = 0 while applying equation (54) on the meniscus. The temperature distribution is a function of Bi

and the geometry of the upper boundary which, for a circular meniscus, depends exclusively on

contact angle. When applied within this context, Bi still delimits the energy transport within the

liquid, but is defined according to the general form in equation (55).

The sensitivity of liquid temperature to Bi is illustrated in figure 11 which shows half-cavity

isotherms corresponding to co = 15 °, and Bi = 1, 10, and 102. Only the left side of the cavity is shown

since the distribution is symmetric about the xl = 0.5 axis. Also, the isotherms are expressed in

terms of ITI because the scaled temperatures for superheating and subcooling are equivalent in

magnitude and differ only in sign (i.e., T < 0 for subcooling and T > 0 for superheating). The most
obvious trend from these plots is the increase in cavity thermal gradient at larger values of Bi. As

Bi---> 0_, conduction becomes the rate limiting process for heat transfer, and the gradient must

increase to support enhanced heat transfer between the liquid and vapor. Alternatively, as Bi ---> O,

surface convection becomes the limiting factor, thus reducing the required thermal gradient.

An important consequence of these trends is the role that Bi plays in dictating interfacial

temperature. The temperature profiles corresponding to the cases in figure 11 are shown in figure 12.

Although the influence of T on convection is conveyed at the boundary by defining T = T(s), since

s = s(xl) at a fixed to, temperature can just as easily be expressed in terms of xl. In all cases, the

maximum temperature difference between the liquid and vapor is located at Xl = 0 and 1, while the

minimum occurs at xl = 0.5. The difference between the scaled temperatures at the side wall and

meniscus center-line is indicative of the average surface temperature gradient.
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In the convection-limited regime represented by low Bi, 17] and IOT/Osl decrease uniformly

towards the center. For Bi < 10, the effects of conduction and surface convection are nearly
equivalent, and the temperature distributions are similar in that the change in IOT/Oxll with xl is

approximately constant. As Bi ---) 0% however, the change in 17] and IOT/Osl is greater which reflects

the higher thermal gradient in the domain. For Bi > 102, heat transfer becomes conduction-limited,

and T(xl) exhibits two distinct regions. At the interline, there is a steep temperature gradient

followed by a relatively uniform distribution in the middle of the cavity.

Although the interest is in liquids with small contact angles, examining the influence of larger

co is crucial for understanding the unique stress characteristics of highly wetting surfaces. The most

significant effects of contact angle are the change in surface area available for heat transfer, and the
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variation of T and OTlOs along the surface. This is evident in figure 13 which shows the temperature

magnitude as a function of contour position s and 09 with Bi = 1, 10, and 10 2 in cavity-centered
coordinates. It is clear that the overall change in T and i)TlOs is less with smaller contact angles

because of the increase in area and the surface's steeper orientation relative to the internal

temperature gradient. As 09 _ 0, the total supportable heat transfer becomes greater due to the
increase in surface area. Hence, the liquid/vapor temperature difference and gradient along the

surface must be less to preserve the pore energy balance.

Bi= 1

171"

171"

.4

Bi = 100

Figure 13.
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Surface temperature versus contour position and 09.
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The surface'ssteeperorientationrelativeto the temperaturefield is exhibited by thenegative
curvaturein IT(s)Inearthe side wall for Bi = 1 and co = 0. In the contact region, the surface tangent

vector si points in a direction that is nearly vertical and parallel to the side wall. The temperature

along the contour decreases much more slowly with respect to s than the case of a flat meniscus. As
09 ---) 90 °, IOT/Osl tends to increase due to the more perpendicular orientation of the interface relative

to the side wall.

The sensitivity of IT1 to 09, especially in the middle of the meniscus, is greater at lower values

of Bi. Temperature variation along the meniscus is continuous and sensitive to the relative
orientation between the temperature gradient and surface. As Bi --) 0% the gradient is shifted toward

the side wall, thus diminishing the sensitivity in the center of the cavity. At Bi = 102, the differences

in IT(s)l are primarily due to the variation in lOs/Oxll near the side wall, and the temperature

distributions are essentially equivalent in the middle of the cavity.

A dimensionless expression for total heat transfer Q is obtained by substituting the scaling

factors in equation (33) into the equation for heat flux q, equation (54). Integrating the resulting

expression over the meniscus area yields:

where

Q = BiH ,

H= frTdF •

(117)

FI is termed the thermal potential and represents the nonlinear dependency of Q on Bi and co.
With superheating, Q > 0 which implies heat transport to the vapor, while with subcooling, heat

transfer is directed into the liquid (Q < 0). Since fluid convection is ignored, the magnitude of Q and FI

are the same for both heating modes. With the temperature distributions shown in figure 1 l, the

values of H corresponding to Bi = 1, 10, and 10 2 are 1.17, 0.60, and 0.16, respectively. Although H

decreases as Bi --4 oo due to the reduced temperature of the interface, the linear contribution of Bi in

equation (117) offsets this decrease and yields corresponding Q values of 1.17, 5.98, and 16.43,
respectively. Q and H exhibit opposite behavior, since H is related to the average interfacial

temperature by Tavg = H/F. This is evident from the values for Tars which are 0.86, 0.44, and 0.12 for

Bi -- 1, 10, and 102, respectively.

The utility of FI extends to more than meniscus heat transfer and temperature. It is

particularly useful for comparing the effects of convection on mass flow through the cavity. With a
fixed surface, for example, the total mass flowrate (i.e., throughput) is obtained by integrating

equation (40) over the surface to yield:

frJd F rI (118)

H serves a similar role as before by separating out the nonlinear influence of Bi and co on mass
transfer.

The sensitivity of the magnitude of the basic state thermal potential IHbl to contact angle and

Bi is shown in figure 14. As Bi --) ,_, [1-Ibl --) 0 and the surface approaches the vapor temperature

T--_ 0. Consistent with the definition of Rs, this represents the state of complete equilibrium
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between the liquid and vapor. With Bi _ 0, however, the surface assumes the side wall value of

temperature and approaches the nonequilibrium limit. As expected, tI-lbl tends to increase as

CO_ 0, especially at lower Bi, because the temperature becomes more uniform and ITI _ 1 along the

entire length of the meniscus. As Bi _ O, II-lbl approaches a maximum limit represented by the Bi = 0

curve, which corresponds to the surface area as a function of CO.

By employing the boundary conditions for temperature and stress, one can derive additional

parameters that characterize the nonlinear influence of Bi and CO on the thermocapillary stress

distribution and its resulting traction along the meniscus. Although fluid convection and stress are
ignored by definition of the basic state, the surface temperature distributions yield a reference 3T/3s

from which a normalized thermocapillary stress, based only on the nonlinear influence of Bi and co,

can be calculated. This derived parameter can then be used later to assess the influence of

convection on the actual force applied on the surface.

One begins by expressing the temperature gradient T,i as the product of a magnitude and a

unit vector gi parallel to T,i, that is:

where

3T

r,- --I 18/ (119)

One then substitutes equation (119) into the tangential momentum balance and heat transfer

conditions (equations (150) and (154), respectively), combines the two equations by eliminating the

common IT,(j)I term, and obtains an expression for the magnitude of the local thermocapillary stress
in terms of Bi and Re.

z qn jS i "- -ReBiT gksk
gjnj "

(120)
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In deriving this expression,one assumes a nonzero heat flux between the liquid and vapor

(i.e., Bi _ 0). BiT in equation (120) represents the local heat transfer rate normal to the interface,

while gksk/gjnj is the ratio between the tangential and normal components of interfacial heat flux.

Equation (120) conveniently separates the linear contributions of Re and Bi from the nonlinear
effects of Bi and 09. Since equation (120) acts in the direction of the tangent vector sin, the

components of the thermocapillary stress can be expressed as:

where

_ on jSiSm = ReBiO m ,

0 m = -T gks--'-Zks m .
gjnj

(121)

The vector Om is termed the modified stress and embodies the nonlinear influence of Bi and co

on the actual stress. BiOta in equation (121) is the m-component of the temperature gradient parallel

to the surface. Since Re represents the ratio of thermocapillary stress to tangential heat flux, BiOta is

the portion of the surface heat flow contributing to tangential stress. An expression is obtained for

the overall force acting on the surface in the xm-direction by integrating equation (121) along the

upper boundary.
Fm= ReBiOm , (122)

where

Om = fr 0 mdF .

Om is the nonlinear contribution to the total thermocapillary force in the xm-direction. In

analyzing the magnitude of force variation, one recognizes that Om = Om(Bi, co), and that Om tends to

vary inversely with Bi. Therefore, to obtain an adequate view of the influence of Bi and co on Fro, Fm

is characterized using the product BiOta which is termed the Re-normalized thermocapillary force. On

and Om are solely functions of surface geometry and the pore temperature field, and reflect the

direction of heat transfer relative to the surface.

With heat flow normal to the surface (i.e., gksk = 0 and gknk = 1), the thermocapillary stress is

zero. Alternatively, with a completely insulated boundary (gtnk = 0), all heat at the surface flows

tangentially thus yielding pure thermocapillary flow. Note that equations (121) and (122) cannot be
used in this case because the definitions of Om and Om were derived assuming the presence of a

normal component of heat flux (i.e., T, tnk _ 0 and gknk _ 0). In the case of a perfectly insulated

boundary or state of maximum nonequilibrium (i.e., Bi = 0), one resorts to the original expression for

thermocapillary stress.

F i = -Re fr TjsjsflF .
(123)

Oi and Oi are useful for showing how contact angle and Bi alter the stress distribution along

the surface. Figure 15 shows the Xl and x2 components of 0i (i.e., 01 and 02) plotted as a function of

contour position for the superheat condition, and Bi = 1, 10, and 102. The distributions are shown for
the left half of the meniscus. The positive values of 01 for s-s(xl = 0.5) < 0 produce a net force acting

on the left half of the meniscus in the Xl-direction. The 01 distribution on the right side of the cavity,

which is a mirror reflection of the left half about the s-axis and center-line, results in an equal
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opposingforce that cancelsout the contribution from the left side. 02, however, is negative and

symmetric about the center-line, and yields a net force in the -x2-direction.
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Figure 15. Modified stress versus contour position and 09.
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The sensitivity of Oi(s) to 09 is due to the manner in which the relative orientation between

the temperature gradient and surface varies with 09. At the lower limit of Bi (= 1), the convection-

limited nature of cavity heat transfer yields a surface temperature gradient nearly parallel to the

surface, g_sk _ 1. Thus, heat flow in the surface direction is greater resulting in a more pronounced

modified stress distribution as Bi --_ O.

With low Bi and contact angles, the functional relationship between 01 and s exhibits a

maximum between the center-line and side wall. At co = 0, 01 vanishes completely in the corners.

Not only does the vector contribution in the xl-direction vanish as 09 _ 0, but the surface becomes

parallel to the side wall and orthogonal to the direction of heat transfer, gkn_ _ 1. The surface in this

region is steeper than the temperature gradient, and gksk increases for a certain distance away from

the side wall. That is, 3011Os > 0, and 01 increases towards the center of the meniscus. This trend

reverses at a certain point since gknk = 1 at the center-line. The reversal point at which gkn_ begins to

increase depends on Bi and co.

With increasing co, the point of maximum 01 shifts to the contact line until 09 -- 45 ° where the

maximum coincides with the side wall. Above this value of 09, the maximum disappears and gks_

decreases continuously from the side wall to the center of the cavity. As 09 _ 90 °, the location of

maximum gksk remains at the side wall, and 01 increases relative to the rest of the cavity.

02 exhibits the same sensitivity to gksk and T. Here, however, the vector component of 02

(i.e., s2) near the side walls increases as 09 _ 0. Unlike 0|, this tends to offset the decrease in the

magnitude of modified stress that occurs with reduced contact angles. Most importantly, it can
drastically reduce and eliminate the contribution of x2-component stress as co _ 90 °. This unique

behavior is illustrated in figure 15 which shows that 1021 can be higher for low o9 in the middle of the

cavity. Another interesting aspect of 02 pertains to the case of a flat surface. Taking the limit of 02 as

09 _ 90", in which Sl and g2 _ 1, one obtains 02 _ s21g2 (= -1). One can see that g2 is nonzero at a

point immediately adjacent to the side wall, and for xl _ 0 or 1, 02 = 0. This is the limiting case of the

x2-component stress for a flat surface.

Bi has a strong influence on Oi as shown by comparing 01 and 02 for Bi = 1 and 10. At larger

values of Bi, the temperature gradient becomes increasingly normal to the surface, and the

contribution of gkst between the side wall and center-line is reduced. The lowering of 01 and 02 about

the center-line is caused by the decrease in T and more perpendicular orientation of T,i with respect

to the surface. From a thermal standpoint, the interfacial temperature distribution is less conducive

to thermocapillary stress because of the increased normal component of heat flux. This trend reflects

a shift of the temperature distribution towards the side wall, which serves to decrease Oi but

increase the actual stress BiOi due to the higher overall gradient.

With Bi = 10 and 09 = 45 °, the variation of 01, which decreased linearly with s at Bi = 1,

follows the same general form as 01 with co = 75 °. In addition, the increasingly normal temperature

gradient is noted by the disappearance of 0i extrema at the smaller values of co. 02 follows the same

trends as 01, but because of the higher s2 near the interline, the x2-contribution to stress is higher for

low contact angles. The value of 02 for all contact angles decreases with Bi due to the higher

temperature gradients and stress in the side wall regions. At the upper limit of Bi (= 102), the stress
force concentrates even more in the side wall regions for both the x_ and x2 components. At low
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contact angles,however_the xl component vanishes almost entirely (compared to a flat interface),

while in the x2-direction, it remains relatively high.

An important aspect of this problem is the manner in which IBiOi[ varies as a function of co.

As the meniscus flattens (co--) 90°), the magnitude of 91 exerted on each half-cavity surface O1 h

tends to increase. Because of mirror symmetry, however, the total O1 contribution equals zero. The

only component remaining when one views the stress force in its entirety is 92. The relationship

between IBi021 for the basic state (i.e., IBiO2bl) and co is shown in figure 16 At Bi = 1, IBiOzb[ is

equivalent to 19201, and reducing co generally increases the total applied force in either the -x2 or

+x2-direction. IBiO2bl actually reaches a maximum at 15 ° < co < 45 ° and decreases slightly as

o9 _ 0. The important point is that the total force disappears with a flat surface.

-fi

0

1 _ 1

0 30 60 90
co (deg)

Figure 16. Basic state BiO2b versus co and Bi.

Although the nonlinear contribution to the total force decreases as Bi ---) _, the linear

influence of Bi offsets this and yields an increase in IBiO21. The sensitivity of IBiO21 to contact angle

tends to increase as Bi ---) _ due to the concentration of temperature change in the interline region.
As Bi ---) _, _T]_s and a greater portion of the total stress become restricted to regions in which Is21

is high. Hence, with lower co, more of the total stress force is directed in the x2-direction.

C. Pure Evaporation and Condensation

Although both modes of interfacial mass transport are based on the same kinematic and

equilibrium assumptions for the liquid/vapor interface, their influence on the steady-state

temperature field, thermal potential, and modified stress force is quite different. To model pure

evaporation and condensation, the thermocapillarity is ignored by setting Ma = 0. This minimizes the

tangential component of surface velocity and causes formation of a vertically-oriented flowfield. The

strength and structure of the field, particularly near the surface, depend on Rs and Bi. An example of

the stream function and temperature distribution for steady-state condensation and evaporation with
Rs = 10-1 and Bi = 1 is shown in figure 17. Note that the reference value of W is set to 0 at the base

of the center-line. The W values for the two cases are opposite in sign to reflect the different
directions of flow relative to the meniscus.
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Figure 17. Pure interfacial flow (Rs = 10 -1 and Bi = 1).

Although no surface traction is present, a tangential component of surface velocity does exist
due to curvature and the nonuniformity in temperature. This phenomenon is illustrated in figure 17 by

the slight bending of the streamlines toward the side wall near the meniscus. The directional bias

arises because the maximum temperature difference and driving potential for mass transport occurs
at the contact line. The main consequence of this phenomenon is an increase in local vorticity near

the surface and strengthening of circulation on either side of the cavity.

The circulation in each half-cavity, which is defined as C = SFVisidF, arises naturally from the

angular momentum caused by inequality between velocities along the center-line and no-slip region
of the side wall. For the left half-cavity, the equation for C is integrated counterclockwise along the

composite surface F containing the vertices (Xl,X2) = (0,1), (0,0), (0.5,0), and (0.5,yo(S)). As will be

discussed later, half-cavity circulation appears to be an important aspect of the flow structure, and is

useful for assessing the competition between simultaneously occurring convection modes.

Comparing the cases in figure 17 points to several important differences between the two

modes of mass transfer. One is the generally lower flow intensity of condensation compared to

evaporation. With evaporation, the magnitude of H increases from a basic state value of 1.17 to 1.27

which equates to raising Tavg from 0.86 to 0.94. The higher value of II-II arises from the compression

of isotherms caused by convection of superheated liquid from the bottom of the cavity, which tends to

reinforce itself by raising the temperature and velocity normal to the surface. With condensation, the

downward direction of flow distends the temperature field about the surface and compresses the

isotherms towards the bottom of the cavity. This causes a lowering of II-II from 1.17 for the basic

state to 1.13 with convection, an increase in Tavg from -0.86 to-0.83 and a reduction of Q into the

cavity. The condensation of warm liquid on the surface raises temperature, thus suppressing the

driving potential for mass flow into the cavity.

Another important difference is the magnitude of half-cavity circulation. For the subcooling

and superheating cases in figure 17, C = -17.71 and 19.49, respectively. The larger circulation
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magnitudefor evaporationis primarily dueto theflowfield's highermassflux and velocity along the
cavity center-line. This reflects the increasedI1-IIcausedby compressionof isotherms near the
surface.Figure 17alsoindicatesthat the surfacevelocity contribution asa fraction of total circulation
is greater for condensationas evidencedby the more pronouncedside wall bias of W near the
meniscus.At low Bi, however, the surface velocity contribution is small compared to center-line

velocity.

The effect of increasing Bi to 10, while holding Rs = 10 -1, is shown in figure 18. At larger

values of Bi, the temperature distribution approaches the vapor value in the middle of the cavity and

acquires a larger gradient near the side walls. This change in heating characteristics reduces flow

intensity and yields less isotherm deformation, as evidenced by the lowering of 1171for subcooling
and superheating to 0.56 and 0.70, respectively. The associated reduction in center-line flow

translates to a decrease in circulation magnitude (i.e., C =-11.46 and 13.19 for subcooling and

superheating, respectively). Although center-line flow is reduced, the more pronounced W-bias

indicates a growing contribution to circulation from surface velocity.
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Figure 18. Pure interfacial flow (Rs= 10-1 and Bi = 10).

Increasing Bi reduces the influence of convection on the pore temperature distribution and

heat transfer. This is especially apparent in figure 19 which shows the W and T distributions for Bi =

102. The W profiles are essentially the same for evaporation and condensation, and the isotherms are

very similar to those for the basic state. The circulation magnitudes also decrease to nearly

equivalent values (C = -4.43 and 4.76 for subcooling and superheating, respectively) due _o the drop

in center-line flow and diminishing influence of convection on the temperature field.

The Bi variation illustrated in figures 17 to 19 actually reflects a lowering of the evaporation

number E while holding Rs constant. Care must be taken when varying Bi in cases involving

condensation or evaporation, because Bi = Bi(E, Rs). Proper assessment of the influence of Rs, which

arises from application of equilibrium assumptions to the kinematic condition for vapor/liquid mass

exchange, must account for the contribution of Rs to Bi. This can be done by comparing figure 18 with
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Figure 19. Pure interfacial flow (Rs = 10 -1 and Bi = 102).

Fig. 20 which illustrates the effect of reducing Rs from 10 -1 to 10-2 while holding E = 10. At the lower

value of Rs, the interfacial flux and flowfield strength for evaporation increase and cause gr er

isotherm compression near the surface. Although the interfacial temperature gradient is substantmlly

larger, the total degree of nonequilibrium represented by FI and Ta,,g decreases from 1.27 to 1.21 and

0.94 to 0.89, respectively. This is consistent with the definition of Rs from section III in that as

Rs .-.-) O, Bi ---) oo and T---) 0 (or I7 _ 0). Although the decrease in Rs results in greater equilibrium

between the vapor and liquid, the associated convection and deformation of the temperature field

increases the T gradient near the surface and degree of nonequilibrium in the liquid.
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Figure 20. Pure interfacial flow (Rs = 10-2 and Bi = 10).
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With condensation,reduction of Rs from 10-1 to 10 -2 also increases flowrate. However, the

W-bias and temperature gradient in the corners becomes greater due to an increase in interfacial

temperature. Unlike evaporation, the downward flow of condensing liquid promotes equilibrium along

the interface by compressing the isotherms towards the bottom of the cavity. The reduction in the

magnitudes of Ilii (from 1.13 to 0.53) and Tavg (from 0.83 to 0.39) is much greater than with

evaporation and indicates a higher level of equilibrium along the interface. Because of the lower IFII,

the flow intensity for condensation is less than evaporation. In addition, there is an increase in

temperature gradient and nonequilibrium along the other boundaries.

The influence of both mass transfer modes on interfacial transport, circulation, and, in the case

of a nonzero O)¢OT, stress is characterized by the departure of temperature from the basic state.
Surface temperature distributions for evaporation and condensation with Bi = 1, l0 and 102 are

shown in figures 21 and 22, respectively. Note that these profiles have been superimposed on those

for the basic state (Rs = o0) to aid in visualizing the deviation.
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Figure 21. Interfacial temperature (pure evaporation).
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Figures 21 and 22 confirm the behaviornoted previously, namely that evaporationcausesa
flattening of the temperature distribution and an increase in H. This is attributed to the
replenishmentof superheatedliquid from the lower boundarywhich, upon approachingthe surface,is
directed toward the corners and regions of highest mass/heattransfer. Becausethe liquid/vapor
temperaturedifference is lower in the center, this hot liquid sweepsalong the surface to the
sidewalls,thus flattening the temperaturedistribution andreducingthe modified stressforce.

With condensation,the surface is heatedby the vapor and assumesa higher temperature
relative to the basic state.Sincethe massflux is concentratedin the contact region, flow is directed
into the centerof the cavity, which causesa peakingin the temperatureprofile. Unlike evaporation,
this temperaturerise reducesthe temperaturedifferencebetweenthe vapor and liquid and decreases
the magnitudeof H. However, the averagetemperaturegradientalong the surfaceis higher than the
basicstateand yields a largermodified stressforce.

The influence of both masstransfer modeson interfacial transport, stress,and, indirectly,
circulation is characterizedby the departureof H andO2 from the basic state.With interfacial mass
transfer,H exhibits the samefunctionaldependenceasHb in that IIII tends to increasewith reduced
Bi and co. Deviation from this reference is best expressed using the ratio I-l/Hb. Figure 23 shows

versus Bi and co at Rs = 10-1. The deviation for evaporation is always positive, since HII-lb > 1

over the range of interest. With condensation, H/lib < 1, thus indicating a reduction in thermal

potential and suppression of interfacial transport. The point of maximum deviation (i.e., extrema of

1-l/TIb) represents the transition between convection and conduction-limited heat transfer processes,

and occurs between 1 < Bi < 10. In this range, fluid convection plays a principal role in dictating the

temperature distribution. As Bi ---) _, the deviation from the basic state vanishes (i.e., l-I/Hb ---) 1).

The surface and domain temperature distributions become conduction-limited, and are affected less

by fluid motion within the cavity. With vanishing Bi, however, the more uniform liquid temperature

restricts the magnitude of temperature variation near the surface, and I'I/lib approaches unity.

Evaporation
to =75*

to =45*

.to = 15"

1 10 100
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Figure 23. li/I-Ib versus Bi and co (interfacial flow).
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Evaporation and condensationalso have different effects on the temperaturegradient and
modified stressalong the surface.Figure 24 showsO2/O20asa function of Bi and co. The fact that

02/02b < 1 for evaporation confirms that this mode of interfacial transport tends to reduce the

average temperature gradient and yields a lower total stress force in the x2-direction than the basic

state. It also suggests that evaporation should suppress thermocapillarity when both convection

modes are present. At the upper limit of Bi (= 102), there is little difference in the stress

distributions (®2/O2b --- 1) since the temperature deviation is so small. With lower Bi, most of the

change in temperature relative to the basic state occurs in the center of the pore, but the temperature

distribution and gradient near the side wall are essentially the same. Hence, the force ratio remains
constant. With further reductions in Bi, the maximum change in interfacial temperature gradient

shifts toward the side walls and at a certain point begins to reduce the gradient. This reduction
continues to a minimum at Bi_= 1. Further reductions in Bi, while not shown on figure 24, must cause

an increase in O2/O2b, because as Bi -4 O, the basic and convective state temperatures approach

unity, and OT/Os -4 0 for both cases.
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Figure 24. O2/O2b versus Bi and co (interfacial flow).

Condensation exhibits an opposite effect on the thermocapillary force. That is, 02/02b > 1 and

the stress increases with lower Bi. As Bi--4 to, the behavior is very similar to evaporation and

02/02b -4 1. As Bi is reduced, however, the accumulation of heated liquid in the center sustains a

higher gradient along the surface. The gradient near the side wall for the basic state decreases faster

than that for the convective regime which assumes a nearly constant distribution from the side wall

to the center of the cavity. Note that with convection, the change in the gradient becomes

increasingly isolated in the center of the meniscus. Therefore, the force ratio, which is mostly

dictated by the gradient in the side wall regions, is greater and continues to increase as Bi -40.

Figure 24 suggests that O2/O2b increases without limit with Bi < 1. This, however, cannot be true

since O2 ""} 0 as Bi -40. It is likely that, as with evaporation, 02]02b -4 1 as Bi -40.
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The influence of condensationandevaporationon circulationis summarizedin figure 25.The
most apparenttrend is the highercirculation associatedwith small contact angles.This is due to the
larger center-linevelocities resulting from the increasein IFII and exposedsurfacearea.With large
to, the streamlines become more perpendicular to the surface, which further reduces the contribution

of surface velocity to circulation intensity. Another trend is the higher circulation associated with

evaporation. This is especially evident at low Bi due to evaporation's higher IFII and center-line

velocity. At the upper Bi limit, however, the circulation for condensation appears to be greater at

large contact angles (i.e., o9 = 45 ° and 75°). In this regime, the center-line velocity is low compared
to the surface component. Hence, the larger surface temperature gradients associated with

condensation yield higher circulation intensities than evaporation.

The differences in ICI for condensation and evaporation appear to vanish at the lower and

upper Bi limits due to the equivalence of surface temperatures. As Bi ---> O, the surface temperature

approaches unity and yields a normal flux that predominates over a vanishing tangential component.
The center-line velocity approaches a value that is entirely a function of to and Rs, and is equivalent

in magnitude for both modes. Therefore, the magnitudes of ICI should converge to the same value as

Bi _ O. With larger values of Bi, the center-line contribution decreases but is partially offset by the
increase in surface velocity. The net effect is a decrease in circulation due to a reduction in

throughput. As Bi--.-> _, the contribution from the center-line vanishes and the circulations for both

cases approach zero.
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Figure 25. Half-cavity circulation versus Bi and to (interfacial flow).

D. Pure Thermocapillary Flow

To examine pure thermocapillary flow, the interfacial resistance is fixed at a high value

(Rs = 103) to eliminate the normal component of velocity and ensure parallel flow at the surface. The
influence of Ma and Bi is first investigated by considering the values Ma = 102 and 103, and Bi = 1,

10, and 102 at a fixed to of 15 °. Figure 26 shows the steady-state _F and T distributions for a

subcooled and superheated cavity with Bi = 1 and Ma = 102. For both heating modes, the thermo-

capillary stress, which acts opposite to the surface temperature gradient, establishes twin
counter-rotating vortices on either side of the cavity. With subcooling, the temperature gradient is
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negative in the x'-direction, and causes a traction toward the corners. This establishes
counterclockwise and clockwise rotations in the left and right sides of the cavity, respectively. With

superheated boundaries, OTlOx' > 0, and the traction on either side is directed into the center or
-x'-direction. The sense of cell rotation for subcooling and superheating are opposite, as indicated by

the positive and negative values of streamfunction. The close similarity between the isotherms in

figure 26 and the corresponding basic state in figure 11 indicates that at low Ma the flow is too weak

to cause appreciable deformation of the temperature field. Conduction remains the primary mode of
heat transfer.
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Figure 26. Pure thermocapillary flow (Ma = 102 and Bi = 1).

At higher Ma, however, convection parallel to the surface causes a significant deviation from

the basic state temperature. This is particularly evident in figure 27 which shows the W and T

distributions for Ma = 103. Apart from a nearly order of magnitude increase in cell strength, reflected

by the larger values of W, increasing the sensitivity of surface stress to temperature substantially

alters the surface and domain temperature distributions from the basic state reference. In the case of

subcooling, surface fluid convected towards the sides of the cavity deforms the isotherms away from

the center-line and establishes a higher IdT/dx'l in the vicinity of the side wall. Return circulation

from the lower portion of each cell convects subcooled liquid upwards through the center, thus

compressing the isotherms and causing a temperature depression in the middle of the surface. With
superheating, the isotherms near the surface deform into the center of the cavity due to the transport

of heated liquid from the side walls. This circulation, which is consistently stronger than subcooling,
causes isotherm deformation in the direction of flow and a reduction of IdT/dx'l near the corners. The

isotherms about the axis of symmetry extend down into the fluid due to the transport of cool liquid
from the surface.
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Figure 27. Pure thermocapillary flow (Ma = 103 and Bi = 1).

The influence of raising Bi is shown in figures 28 and 29 which depict W and T distributions for
Ma = 102 and 103 at Bi = 10. An obvious difference between these cases and those for Bi = 1 is the

marked increase in circulation intensity arising from increased temperature variation and stress. At

Ma = 102, deformation of the temperature field is more extensive than figure 26 (Bi = 1). However, it

is relatively small compared to the Ma = 103 case, where one encounters considerably more isotherm

deformation than figure 27. With subcooling and Ma = 103, the flow assumes the same structure as

Bi = 1, but the transport of heated liquid in the x'-direction shifts the maximum temperature to a

point midway between the center-line and side wall. With superheating, the circulation cell shifts

toward the cavity center and causes formation of a temperature depression in the middle of the pore.

The gradient associated with this depression results in a centrally located stress concentration
directed towards the center-line.
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Figure 28. Pure thermocapillary flow (Ma = 102 and Bi = 10).
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Figure 29. Pure thermocapillary flow (Ma = 10 3 and Bi = 10).

The same trends apply at the upper limit of Bi (= 102), shown in figures 30 and 31. Although
the flowfields are stronger than the previous cases, at low Ma (= 102), the difference in isotherm
distributions for the two heating modes vanishes as Bi --4 oo.
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Figure 30. Pure thermocapillary flow (Ma = 102 and Bi = 102).
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Figure 31. Pure thermocapillary flow (Ma = 103 and Bi = 102).
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All the cases investigated so far indicate that superheating consistently yields a stronger

circulation than subcooling. This difference is primarily due to the manner in which the circulation

cells situate near regions of concentrated stress. That is, the cells shift towards the side wall with

subcooling, but move towards the center-line when superheated. The viscous losses associated

with these positions are quite different. At the side wall, subcooled flow accelerated along the

surface encounters the stationary boundary at a higher relative velocity than the superheated regime,
which meets it at the bottom of the cell. Thus, the viscous losses along the side wall are greater for

the subcooled regime. Along the center-line, however, both modes experience a slip condition

caused by opposing flow from the other side of the cavity. Although the viscous losses here are

greater for superheating, the losses for both modes are less than those at the side wall.

Consequently, the superheated flow regime incurs less viscous losses and a higher circulation than

subcooling.

Figures 32 and 33 depict the interfacial temperature profiles for subcooling and superheating
with Ma = 103 and Bi = 1, 10 and 102.
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Figure 33. Interfacial temperature (subcooling).
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In both cases,the deviation from the basic statedistribution is causedby the accumulation
and convectionof heatedliquid along the surface.With subcooling,the liquid is convectedtowards
the side wall thus shifting the temperaturedistribution and isothermsto either side of the cavity.
There is also a competing upward circulation of cooler fluid along the center-line which reduces
surfacetemperatureand causesa localized depressionin the temperatureprofile. This competition
arisesbecauseupwelling opposesthe surface temperaturegradient and can cause3T/Osto vary in

sign between the center-line and side wall.

With superheating, liquid heated at the side walls flows to the center under the action of

thermocapillary stress, while fluid heated at the bottom is circulated and directed at the comers. The

direction of convective heat transport coincides with that for surface conduction, and aTlas changes

sign only at the center of the meniscus. Again, one observes the formation of a temperature depres-

sion near the center-line caused by the accumulation and downward circulation of heated liquid.

The response of surface temperature to thermocapillary convection yields a more complex

deviation from the basic state thermal potential and modified stress force than pure evaporation or

condensation. Figure 34 shows O2/O2b and H/Hb as functions of Bi for the cases in figures 26 to 31.
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Figure 34. O2/O2b and H/rib versus Bi (thermocapillary flow).

One sees that the deviation in rI for both heating modes increases with Bi. With
superheating, hot liquid flows from the side walls to the center-line, and from the bottom to the

corners. Cellular convection in this case is complementary with the interfacial temperature gradient

and tends to raise H. With subcooling, the heated liquid convected along the surface tends to raise

interfacial temperature and lower rI. However, the upward circulation of cooler fluid causes a

localized depression in the temperature profile that tends to increase FI. Although the influence of

upwelling increases with Bi, lI/l-Ib for subcooling is always less than superheating. In fact at low Bi,

surface convection dominates the interfacial temperature profile, and rI/rI b < 1.
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The magnitudeof 02 for superheatingis always less than the basicstatebecauseof its lower
averagesurface temperaturegradient.Oneseesthat this differenceis greatestat the lower limit of
Bi, and as Bi --_ _,, 02]1_)2 b "--ff 1. An almost opposite trend occurs with subcooling. At low Bi,

interfacial convection shifts the temperature gradient to the side wall, thus increasing the magnitude
of OT/Os and the contribution of s2 to 02. With higher Bi, however, this effect is increasingly offset by

the temperature depression caused by upwelling, which opposes the thermocapillary-induced

thermal gradient and stress. The competition between these two effects yields a minimum condition

for 1_)2102b at Bi --- 30. Above this value, upwelling predominates, and 02/_)2b increases such that

02]02b _ 1 as Bi _ oo.

Figure 35 illustrates the variation in circulation intensity with Bi for Ma = 102 and 103 . As

explained before, the circulation for superheating is higher due to the lower viscous losses incurred

along the side wall. At low Ma, the values of ICI for both modes converge to a common value due to
the reduction in isotherm deformation at low and high Bi.
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Figure 35. Half-cavity circulation versus Bi (thermocapillary flow).

As Bi _ 0, the surface temperature becomes more uniform and less sensitive to convection.

Furthermore, the temperature gradient vanishes and C _ 0. On the other hand, as Bi --4 oo, the

gradient becomes concentrated in the side wall region, and the flow becomes conduction-limited. The

difference in isotherm deformation and circulation intensity for the two modes vanishes again. At the
upper limit of Ma (= 103) and low Bi, the circulation exhibits the same trends. At high Bi, however,

surface temperature is much more sensitive to superheating and acquires a distribution that

increases the thermocapillary stress force relative to subcooling, as shown in figure 34. The diver-

gence between the C-curves in figure 35 shows that this difference in behavior persists as Bi --4 oo.

One of the most important consequences of thermocapillary flow with small contact angles is
the large dynamic pressure gradient encountered in the contact region. This is illustrated in figure 36

which shows the Pd distributions for Ma = 103 and Rs = 103 at a contact angle of 15 °. With

subcooling, surface flow towards the side walls causes a rise in pressure at the corners and a

suction in the middle of the meniscus. With superheating, however, the flow is reversed and causes

a suction at the side walls. In all cases, the pressure distribution in the center of the cavity is

relatively constant, and becomes significant only at the sides of the pore.
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Figure 36. Dynamic pressure versus Xl (Ma = 103).

The magnitude of the pressure gradient appears to be a strong function of the thermocapillary

stress, as illustrated by the sensitivity of Pd to Bi. Since Ma is held constant, the larger values of Bi

correspond to higher stress forces and circulations in the cavity. Because the circulation for

superheating is consistently higher than that for subcooling, the variation in pressure magnitudes for

the two heating modes is most likely related to the difference in their circulation intensities.

The large pressure magnitudes in the contact region are caused by the accommodation of flow

through an area that becomes increasingly constricted with smaller contact angles. The pressure
must increase to accommodate the higher viscous stress in the side wall region near the comers. It

can be shown using a simple force and momentum balance about the comer that Pd << 0 for

superheating and Pd >> 0 for subcooling. The difference in sign is due to the different directions of

thermocapillary stress application. From a physical standpoint, pressure acts as a force applied at

the corner that balances changes in fluid momentum, thermocapillary stress and friction. Because the

momentum change is very sensitive to restrictions on flow area, the pressure gradient is a strong

function of contact angle.

It was shown in section VI.B that contact angle has a notable effect on the modified stress
force. Therefore, one expects any convective motion that depends on surface area and orientation to

be very sensitive to o9. The influence of 09 is particularly important when considering highly wetting
fluids because, as shown in figure 36, it appears to lead to extremely large dynamic pressure

gradients at the meniscus contact line.

To examine the influence of contact angle, Ma and Bi are held at 102 and 10, respectively. The

lower value of Ma is selected to limit deviation from the basic state and emphasize the influence

of o9. Figure 37 shows the steady state stream function and temperature distributions for

thermocapillary flow at o9 = 75 °, 45 °, and 15 °. The most apparent trends are the suppression of
circulation at larger contact angles and the higher flow intensities associated with superheating.
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Figure 37. Contact angle sensitivity (Ma = 102 and Bi = 10).

The differences between these six cases are summarized in table 5, which in addition to rI

and Bi02, shows the half-cavity stress force in the xl-direction BiO1 h, maximum half-cavity
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streamfunction ItlJlmax, the circulation C, and the difference in interfacial pressure between the

contact line and cavity" center IPdlmax. Since Ma and Bi are the same for all cases, BiOi directly

reflects the nonlinearity of stress force or Oi.

Table 5. Pore characteristics (Ma = 102, Rs = 103, and Bi = 10).

Mode 09 1/71 IBiOlhl IBiO21 [_rJlraax C [Pdlmax

Subcool

Superheat

15"

45 °

75 °

15"

45 o

75"

0.598

0.422

0.343

0.603
0.427

0.338

0.388

0.594

0.760

0.454
0.651

0.801

1.194

0.899

0.345

1.198

0.896

0.342

0.40

0.36

0.30

0.51

0.48

0.41

6.81

4.59

3.06

-7.95

-5.69

-4.04

28,260
5,670

2,057

27,480

5,914

1,901

Bi01 h behaves similarly to the basic state in that it tends to increase with a flatter interface.

The total force in the x2-direction, however, decreases dramatically which approximately coincides

with the trend for flow intensity, [Uttlma x. The nearly linear variation of [_[max with IO21, which is

illustrated in figure 28, suggests that circulation is dictated primarily by the magnitude of 02, and is

relatively independent of O1 h. This is reasonable from a physical standpoint because the influence of

O1 h, which accelerates fluid in the xl-direction, is canceled out by the O1 h contribution from the other

side of the cavity. This phenomena is manifested by the impingement of fluid in the center which

restricts motion in the xl-direction. It does not apply to flow in the x2-direction which, apart from the

stress conditions along the sidewall and center-line, is less constrained in terms of momentum. The

relationship between circulation and O2 also explains why the flow intensity is larger for lower

contact angles.

0.6

0.2

0.0
0.0 0.4 0.8 1.2

IO21

Figure 38. Stress correlation (Ma = 102 and Bi = 10).
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As notedearlier, one of the most important consequences of thermocapillary flow with small

contact angles is the large dynamic pressure gradients in the contact region. This behavior is
illustrated in figure 39 which shows numerically obtained pressure values at the four surface nodes

adjacent to the left side wall for the cases depicted in figure 37. It is apparent that dynamic pressure

gradient increases dramatically as co _ 0 and diminishes as co _ 90 °. In fact with a contact angle of
15 °, the pressure can be an order of magnitude higher than the value for a flat interface.

Another important aspect is the slightly larger pressure magnitudes for subcooling. This trend

appears to contradict the results obtained before with Ma = 103 in figure 36. At the lower value of Ma
(= 102), the circulation intensity for superheating is only slightly higher than that for subcooling.

Hence, the pressure gradient is more sensitive to the local thermocapillary stress exerted at the

interline. With subcooling, convection strengthens the temperature gradient, while with

superheating, it is weakened. The higher pressure gradient for subcooling is attributed to the larger

local stress magnitude in the corners.
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Figure 39. Interfacial pressure near interline (Ma = 102 and Bi = 10).

The effect of Bi and co on thermal potential and surface stress at the upper limit of Ma (= 103)

is now examined. Figure 40 shows FI/FIb for subcooling and superheating as a function of co and Bi.

At lower values of co, the relationship illustrated in figure 34 with co = 15 ° still applies. In fact, the

deviation from the basic state increases with larger contact angles. Unlike pure interfacial flow, I-I/FIb

for subcooling is greater than unity because thermocapillarity tends to augment meniscus heat
transfer by circulating cool liquid from the bottom of the cavity to the middle of the mensicus.

However, this effect is significantly less than superheating which yields a much greater increase in

I-I. With both heating modes, H/Hb also increases with Bi due to the stronger circulation intensities
and isotherm convection about the surface.

At higher values of co, however, a drop in FI/FIb is noted for both heating modes. This is

particularly evident for subcooling, but it also applies to superheating at Bi = 102. With flatter

interfaces, the circulation cells in each half-cavity become more constrained by each other. Although
the total stress force increases with Bi, the stress concentration shifts to the sidewalls, and the

force applied in the center, as a proportion of the total thermocapillary force, decreases. Because of

the reduction in the local traction in the center, the flow around the impingement region slows, and
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the circulation and temperaturedeformationbecomeless. This reduction in deformation causesa
drop in thermal potential and shifts the maximum deviationin I-I to a lower value of Bi. Recall that

1-I/Fib ---Y1 as Bi _ oo for all contact angles.

Subcooling Superheating

10
1

I
I

45 ° 75 ° 15 ° 45 ° 75 °

t,O

Figure 40. H/FIb versus co and Bi (thermocapillary flow).

The sensitivity of O2/O2b to co and Bi is shown in figure 41. Although the ratio is relatively

independent of 09, the variation in 02102b with Bi is more pronounced for superheating because the

thermocapillary convection associated with this regime tends to reduce the temperature gradient and

yield a lower modified stress than the basic state. Consistent with the trend observed with pure

interfacial flow, O2/O2b --_ 1 as Bi _ ,,o. This is because the deformation becomes less due to the flat

temperature distribution in the center of the cavity.

The complex relationship for O2/O2b with subcooling is due to competition between (1) the

increase and shifting of the temperature gradient towards the sidewalls, and (2) the upwelling of cool

fluid from the bottom of the cavity which causes an opposing gradient around the center-line. With

the former effect (1), one would expect O2/O2b tO be consistently greater than 1, which would mirror

the trends for superheating. This effect predominates for low Bi and 09, where the influence of

upwelling is small. With increased Bi, however, upwelling lowers the average gradient to a value

less than the basic state. With increased o9, the gradient shift is almost totally offset by upwelling.
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Figure 41. 02/02b versus co and Bi (thermocapillary flow).
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E. Combined Flow Regimes

Since interfacial flow and thermocapillarity yield opposing circulations when subjected to the

same heating conditions, the combined regime reflects a competition between two convection modes.

The relative influence of each is indicated by the half-cavity circulation C which changes sign

according to the predominance of either regime. With combined flow, the circulation, velocity field,

and surface temperature distribution are dictated by the relationship between Ma, Rs, and Bi. At low

Bi, the surface temperature gradients are small. Consequently, the flow is more sensitive to

variations in Rs than Ma, and it manifests many of the features of pure evaporation or condensation.

For high Bi, the interfacial temperature gradients are larger, and the influence of interfacial flux is
restricted to the interline. The flow in this case becomes less sensitive to Rs, and tends to model

pure thermocapillary behavior.

Figure 42 shows examples of combined mode condensation and evaporation for Ma = 103, Rs

= 10 -1, and Bi = 10. With subcooling, the flowfield assumes a circulation pattern similar to its pure

thermocapillary counterpart in figure 29, but it also contains negative-value streamlines representing

the flow of condensing liquid from the interline region to the bottom of the cavity. This flow tends to

shift the vortices on either side of the cavity to the center-line, and causes a distention of surface

isotherms towards the bottom, similar to its pure condensation counterpart in figure 18.

From the standpoint of circulation, C = 46.45 for the combined regime, which is less than the

value of its thermocapillary counterpart (C = 56.24). Although the combined regime is

thermocapillary-dominant, its IFII value of 0.55 is less than either the pure thermocapillary or

condensation cases (which are 0.62 and 0.56, respectively). This is illustrated in figure 42 by the

difference between sidewall and center-line stream functions at x2 = 0, i.e., IAtFI, which reflects

mass transfer through the half-cavity. For the combined regime, IAUdl = 2.73, which is only slightly

less than the value for pure condensation, IA_FI -- 2.78.
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Figure 42. Combined convection (Ma = 103, Rs = 10 -1, and Bi = 10).
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It is clear that the heat transferfor combinedconvectiondoesnot representa simple average
or superpositionof the_:mocapillaryandcondensationeffects.Rather,thermocapillarity modifies the
surface temperaturein a manner that augmentsthe tendencyof condensationto accumulatewarm
fuid on the surface. This behavior is tantamount to removing the IHt-increasing influence of
upwelling in subcooled thermocapillary flow. In combinedmode condensation,the cooler center
region that results from upwelling is eliminated by warm condensatein the middle of the cavity.
Without this offsetting influence, the sole action of thermocapillarity is to extend this warm region
toward the corners,therebylowering the thermalpotentialrelative to purecondensation.

With superheating,the evaporationflux, which is representedby positive-valuestreamlines,
convects the vortices and liquid toward the corners. The circulation magnitude for this case,
C = -102.31, is lower than its pure thermocapillary counterpart, C = -137.85, but the flow clearly

remains thermocapiltary-dominant. The thermal potential also remains the same at IFII = 0.797.

Although the flowfield is thermocapillary-dominant in terms of circulation and thermal potential, the

total mass flowrate across the meniscus IAWt = 3.77 is greater than its pure evaporation counterpart

(IAWI -- 3.49) in figure 18, and the surface temperature profile promotes evaporation.

The effect of reducing Bi to 1 is illustrated in figure 43. The lower value of Bi reduces the

surface temperature gradient and thermocapillary stress. Interfacial flow is also higher because of

the increased magnitude of FI. With subcooling, the circulation value of 5.07 indicates a transitional

flow structure quite different from its pure thermocapillary counterpart in figure 27, where C = 16.05.
This difference applies to thermal characteristics, as well. The thermal potential of the combined

regime (IFII- 1.09) is less than either pure thermocapillary flow (11-II - 1.18) or pure condensation

(11-II - 1.13). In addition, the mass throughput of tAWI = 5.42 represents a slight decrease relative to

the pure condensation case of 5.59. As in the case of Bi = 10, thermocapillarity contributes to the

suppression of thermal potential caused by condensation.
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Figure 43. Combined convection (Ma = 103, Rs = 10 -1, and Bi = 1).

With superheating, the lower value of Bi also yields a circulation (C = 2.70) that reflects a

transition between pure thermocapillarity and evaporation (where C =-28.36 and 19.49,

respectively). Although the positive value of C implies a more interfacially dominant regime than
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combinedmode condensation,the thermalpotentialis basicallythe sameasits pure thermocapillary
counterpart,where 1171- 1.21.Unlike thecaseof Bi = 10, this value of 1.21 is less than the thermal

potential for the pure evaporation case, where 1171= 1.25, and is only slightly greater than the basic

state value of 1.20. Consequently, the mass throughput for the combined regime IA_'I = 5.84 is less

than the pure evaporation IA_'I value of 6.11. The opposing action of thermocapillary circulation

restricts interfacial convection and isotherm compression at the surface, thus reducing evaporation.

The influence of reducing Ma is illustrated by comparing figure 44 with figure 43. With

subcooling, the circulation change from 46.45 to -4.66 when Ma is decreased from 103 to 102,

respectively, represents transition to a slightly condensation-dominant flowfield. Although the low

magnitude of C at Ma = 102 implies that neither regime is completely dominant, the vortex driven by

interfacial stress disappears and is replaced by a vertical flow structure very similar to figure 18. In

fact, 1171and IAWI increase to 0.56 and 2.77, respectively, which are the same values as the combined

regime's pure condensation counterpart. Reduction of Ma clearly decreases the suppression of

thermocapillarity on 1171, and the flowfield becomes condensation-dominant in terms of heat and
mass transfer.

.8

.6

x2

.4

.2

0

Subcooling

0 .2 .4

1--
.6 .8 1

Superheating

0 .2 .4
I

.6 .8
xl xl

Figure 44. Combined convection (Ma = 102, Rs = 10 -1, and Bi = 10).

With superheating, the circulation change from -102.31 to 4.00, when Ma is decreased from
103 to 102, represents a transition to evaporation-dominant flow. Recall that at Ma = 103, the

combined regime enhanced evaporation by raising the thermal potential with respect to pure

evaporation (i.e., 1171= 0.80 for combined mode, while 1171= 0.72 for pure evaporation). Upon lowering

Ma, the circulation patterns of both modes offset each other, thereby reducing convective effects near

the surface. This is manifested by a drop in 1171to 0.67, which is slightly higher than the basic state

value of 0.61 but less than the pure evaporation value of 0.72. It is also manifested by the flowrate

IAWI -- 3.13, which is less than either case in figures 41 and 18. It appears that the convection that
drives isotherm deformation relative to the basic state is neutralized as C --_ 0.

The effect of raising Rs is shown by comparing figure 45 with figure 44. With both

condensation and evaporation, increasing Rs from 10 -1 to 1 produces a thermocapillary-induced

vortex and an approximately order-of-magnitude reduction in interfacial flow. The flow transitions
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from a structure dominated by interfacial flow (i.e., C = -4.66 for subcooling and C = 4.00 for

superheating) to a thermocapillary-dominant structure (i.e., C = 5.72 for subcooling and C = -7.45 for

superheating).
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Figure 45. Combined convection (Ma = 102, Rs = 1, and Bi = 10).

The thermal potential for subcooling increases from 0.56 to 0.59 due to the diminished
accumulation of warm condensate on the meniscus, but it is still less than the II-I1 associated with

the basic state. With superheating, however, IIII drops to a value close to the basic state. Since

thermocapillarity and interfacial flux both increase thermal potential, an increase in nonequilibrium

(or decrease in llRs) should reduce the nonlinear influence of Bi on temperature. Note that increasing
interfacial resistance from 10 -1 to 1 drops the half-cavity throughput IAWI from 3.13 to 0.35 for

superheating and from 2.77 to 0.29 for subcooling.

The influence of Ma, Rs and Bi is summarized in figure 46 which shows circulation versus Rs

for Ma = 10 and 102, and Bi = 1, 10 ,and 102.

To facilitate comparisons, a corrected circulation C* is used, where C* = C for

superheating/evaporation and C* =-C for subcooling/condensation. With these definitions,

thermocapillary-dominance is indicated when C* < 0, while interfacial-dominance occurs when
C* > 0. The transition region is defined to include not only the crossover point at C* = 0, but also the

bounds where C* changes from being relatively independent of Rs (i.e., Rs < 1) to being strongly

dependent on Rs and Bi (i.e., Rs > 3x10 -2 to 10-1).

At the lower limit of Bi (= 1), thermocapillary flow is relatively weak compared to either

condensation or evaporation. The low interfacial temperature gradient yields a very low circulation

intensity in the thermocapillary-dominant region. The influence of Ma in this case is vanishingly

small as illustrated by the negligible difference in C* between Ma = 10 and 102. For this range of Ma,

the transition regime occurs between 0.5 < Rs < 10. At lower values of Rs (i.e., Rs < 0.1) interfacial

flow clearly dictates circulation intensity.
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Figure 46. Half-cavity circulation versus Ma, Rs, and Bi.
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With superheating, the influence of Ma on C* essentially vanishes for Rs < 10 -1, and the flow

becomes solely a function of Bi and Rs. The increasing accumulation of warm liquid as Rs --4 0
reduces the interfacial temperature gradient and diminishes the influence of Ma. This behavior,

however, does not apply to subcooling, which assumes a lower C* and distinct Ma dependency for Rs
< 10 -I. As mentioned before, the lower C* is due to the suppressing influence of condensation on IFII.

This reduction in I1-II is complemented by an associated increase in Bi02 and thermocapillary stress.

Thus, the differences in Ma persist at low Rs, and tend to augment the suppression of I1-II at larger
condensation rates.

At higher Bi (= 10), the increased temperature gradient shifts the transition to interfacial

dominance to lower values of Rs. In addition, the values of Rs representing the transition region are

influenced much more by Ma. In general, the point at which C* becomes independent of Ma occurs at

a lower value of Rs. At the lower limit of Ma (= 10), the transition region shifts slightly to the left due

to the very small circulation intensity. At higher Ma (= 102), the shift to a range of 0.03 < Rs < 0.3 is

more noticeable due to the increase in thermocapillary circulation strength. Although it cannot be

discerned from the plot, one expects C* for Ma = 10 and 102 to converge as Rs _ O.

Another aspect of figure 46 is the different slopes exhibited by the subcooling and
superheating curves in the transition region. As discussed previously, this behavior is due to the

opposite influence of evaporation and condensation on interfacial temperature. With superheating
and evaporation, interfacial temperature and IFII increase steadily with lower Rs due to isotherm

compression. With subcooling, however, IFII is reduced due to distension of isotherms towards the

bottom of the cavity. The Rs value at which this behavior becomes noticeable tends to decrease at

higher Bi. At Ma = 102, the crossover point occurs near the transition C* = 0. This means that over

the entire range of Rs and Bi, C* for superheating is always greater than subcooling. This is not the
case at the lower limit of Ma. Here, it appears that there are values of Rs at which C* is greater for
condensation.

A further increase in Bi to 102 yields the same trends as before. Here, however,

thermocapillarity is even greater as reflected by the lower transitional ranges. The transition from
thermocapillarity to interfacial flow at Ma = l0 occurs at Rs ---0.5, while at Ma = 102 it occurs at Rs ---

0.05. The temperature suppression of condensation is also more evident and creates a distinct

disparity in the C* values for subcooling and superheating in the interfacially dominated region. With

this combination of parameters it appears that the influence of thermocapillarity persists for Rs <_ 10 -2

since the curves do not seemingly converge. However, it is expected that the convergence noted
before will occur as Rs --) O.

The influence of Rs, Bi, and heating mode on thermal potential at Ma = 102 is shown in figure
47. With superheating, both thermocapillarity and evaporation augment one another in terms of their

influence on IHI. Since the Marangoni number examined here is too small to effect appreciable

convection-induced deformation of the temperature field, the value of IFII for Rs > 1 (thermocapillary-
dominant regime) is essentially constant and equivalent to the basic state value. For Rs < 1,

however, IFII increases relative to the basic state due to the compression of isotherms towards the
surface. One also sees that the increase in IFII is greatest at a Bi close to 10. This is consistent with

trends for pure evaporation in figure 23, which indicated a maximum increase between 1 < Bi < 10.

With condensation, the surface potential in the thermocapillary-dominant region still closely

approximates the basic state because of the small isotherm deformation. With reduced Rs, however,

II-II decreases due to the previously mentioned increase in surface temperature.
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Figure 47. IHI versus Rs and Bi (combined convection).

In section VI.D, it was found that circulation and interfacial pressure gradient were very

sensitive to contact angle. A similar analysis of combined mode condensation and evaporation is

performed by examining contact angles of 15 °, 45 °, and 75 °, while holding Ma = 102, Rs = 101/2 =
0.31623 and Bi = 10. The corresponding stream function and isotherm plots for these cases are

illustrated in figure 48, and a summary of important flow parameters is shown in table 6. A

comparison between tables 6 and 5 indicates that the influence of 09 on pure thermocapillary flow and

combined convection is generally the same. For instance, IFII, ICI and IPdlmax are greater at small

contact angles, and ICI for all values of 09 is consistently higher for superheating. With combined-

mode subcooling, the suppression of upwelling by condensation results in a IFII lower than either the

pure thermocapillary or condensation cases. Alternatively, with superheating the mutually

augmenting effects of evaporation and thermocapillary stress yield higher thermal potentials than

with pure thermocapillary convection.

The most notable difference between the convection modes in tables 5 and 6 is the

substantially higher pressure gradient associated with combined flow. Numerically obtained values

at the four nodes adjacent to the sidewall are shown in figure 49. Although the circulation

magnitudes in table 6 are approximately 40 to 50 percent less than their counterparts in table 5, the
values of IPdlmax are between 1.5 to 2.5 times higher than pure thermocapillary flow. The difference is

greatest for subcooling with 09 = 15 ° in which the presence of condensation raises IPdtmax by a factor

of 2.47. This contrasts with the smallest increase which occurs with superheating at to = 15 °. Here,

IPdlmax increases by a factor of 1.43.

Regardless of the contact angle or heating mode, combined convection yields a higher

interfacial pressure gradient than either its pure thermocapillary or interfacial counterparts. This is
because both modes yield similar pressure distributions near the interline, and the combination of the

two represents a superposition of their distributions. For instance, the vertical flow structure of pure

condensation yields a positive pressure gradient in the xz-direction. Because the fluid is wetting, the

interline pressure must be higher to compensate for its increased distance from the base of the

cavity. With pure subcooled thermocapillary flow, the interline pressure is also higher to

accommodate the high momentum flux through this region. In both cases, the interline pressure is

greater at lower contact angles.
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Figure 48. Contact angle sensitivity (Ma = 102, Rs = 10 -l/z, and Bi = 10).
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Mode

Table 6.

CO

Pore Characteristics (Ma = 102, Rs = 10 -1/2, and Bi = 10).

II-II [BiOlhl IBiO21 lUfllmax C IPdlmax

Subcool

Superheat

15 °

45 °

75 °

15 °

45 °
75 °

0.576

0.403

0.321

0.620

0.445
0.359

0.419

0.621

0.784

0.419

0.621

0.773

1.233

0.925

0.354

1.166

0.872

0.334

0.06

0.09

0.07

0.07
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Figure 49. Interfacial pressure near interline (Ma = 102, Rs = 10 -I/2, and Bi = 10).

F. Summary

In this section, the steady-state thermophysical behavior of a two-dimensional pore

subjected to superheated and subcooled boundaries was examined. The free surface was assumed to

be circular and wetting, and was treated solely as a function of contact angle co. For analysis of the

basic state, several parameters were derived which characterize the nonlinear influence of Bi and co

on interfacial transport and thermocapillary stress, namely thermal potential I-I and modified stress

Oi. It was shown that integrating Oi along the surface yields a net Re-normalized traction, BiOi,

which acts in either the +x2 (subcooling) or-x2-direction (superheating). Due to the relative

orientation between the surface and internal temperature gradient, this force increases as co _ 0 or

Bi ---->0% but vanishes as co _ 90 ° or Bi --_ O. It was also found that 1171is larger for smaller contact
angles, but decreases as Bi .--) oo.

Pure evaporation and condensation establish vertically oriented flowfields in the cavity. The

flowfield strength is characterized by the mass throughput and circulation in each half-cavity, and, for

a given co, Bi and Rs, is always greater for evaporation. With evaporation, the positive deviation in l-I

from the basic state reflects the convection of heated liquid towards the surface, which strengthens
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and reinforces interfacjal transport. With condensation, the deviation is negative due to the
accumulation of warm condensatewhich suppressesmass flow into the cavity. The interfacial
temperature increaseassociatedwith evaporationflattens the temperatureprofile and reducesthe
stressforce relative to the basic state.The temperaturerise associatedwith condensation,however,
causesa peaking about the center-linewhich increasesstress.

Pure thermocapillaryflow is characterizedby a pair of counter-rotatingcells aboutthe center-
line. The strengthof eachcell is characterizedby thehalf-cavity circulation which tendsto increase
in magnitudewith largerMa and Bi. The circulation arising from thermocapillarity is opposite in sign
to that for interfacial flow. In addition, the magnitude is always less for subcooling due to this

regime's higher viscous losses along the side walls. It was found that superheating increases

interfacial temperature and H relative to the basic state by convecting heated liquid from the
sidewalls towards the center-line. With subcooling, a more complex behavior arises from the

competition between surface convection and upwelling. At low circulation intensities,

thermocapillarity extends the heated region along the surface and reduces 1171. At higher circulations,
however, this effect is increasingly offset and eventually overwhelmed by cool liquid from the bottom

of the cavity which causes a net increase in II'II. This increase is always less than the positive

deviation associated with superheating.

Another important result was the increase in circulation intensity with lower contact angles

and proportionality of cell strength to the x2-component of the thermocapillary stress force. It was

also found that smaller contact angles yield significantly larger dynamic pressure gradients along the

surface and magnitudes at the interline. With subcooling, pressure increases towards the sidewall,

and assumes a positive value with respect to the base of the cavity. With superheating, the gradient

is negative, and yields a large negative value at the contact point.

The flowfield for combined-mode convection reflects a competition between thermocapillary

and interfacial flow. With superheating, the circulations for evaporation and thermocapillarity are

opposite, but both modes promote thermal potential and suppress the surface stress force.

Consequently, the I'I values in the thermocapillary-dominant regime yield higher evaporation rates
than pure interfacial flow. In the transitional region, however, the opposing circulations for

thermocapillarity and evaporation suppress convective effects, and yield surface temperatures

approximately equivalent to the basic state. In the interfacially dominant regime, the flow and 17

behave the same as in pure evaporation. The influence of thermocapillarity and Ma vanishes with

decreasing Rs because of isotherm compression and reduction of the surface temperature gradient.

The behavior of subcooling is complicated by the tendency of condensation to promote surface

stress. In the thermocapillary-dominant region, the flow is very similar to superheating, but the

positive deviation in FI is much less. In the transitional regime, two important effects occur that
cause a departure in behavior. One is the reduction in thermal potential and restriction on

condensation rate caused by accumulation of hot liquid around the meniscus center-line. The other is

the reinforcement of thermocapillary flow due to the increase in temperature gradient. Because of

these effects, the transition to an interfacially dominant flow structure occurs at a lower value of Rs

than superheating. In addition, the sensitivity of circulation to Ma persists in the interfacial-dominant

regime because of condensation's reinforcing effect on thermocapillar-y convection.

It was also found that the contact angle can influence the transition between thermocapillary

and interfacially dominated flow and that the flowfields at lower co tend to be more thermocapillary-

dominant. Another important observation was the dramatic increase in interfacial pressure gradient
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at low co. This occurs because the combined-mode pressure distribution represents a superposition

of the pressure fields associated with each mode, which share the same general distribution.

VII. SURFACE DEFORMATION

A. Introduction

In sections III and V, the causes of surface deformation were discussed, and in section IV, a

method for solving meniscus geometry was developed. In the steady flow analysis of section VI,

however, this report followed the approach of other researchers and neglected deformation of the free

surface by assuming vanishingly small Capillary and Crispation numbers. This assumption would be

valid except for several important differences between the problem addressed in this study and those

performed before.

First, the length-scales considered here are extremely small (i.e., 1 I-tm < D < 102 lam), and

the scaling analysis has shown that Ca, which varies inversely with dimension, can be significant for

D < 103 I.tm. Secondly, comparisons of the interfacial pressure distributions in section VI indicated a

dramatic increase in the magnitude of Pa near the interline at low contact angles. Most prior studies

of thermocapillary flow with deforming interfaces considered liquid with high contact angles

(09 ~ 90 °) or pinned end locations. The surface pressure gradients for these cases, as verified in

section VI, were probably small. With low contact angles, however, the pressure gradients may be

substantial enough to cause significant deformation, even at moderate to low values of Ca. A third

major difference is that previous work in thermocapillary flow concentrated on either combined

thermocapillary/buoyancy-driven convection or thermocapillarity alone. Hence, the added influence of

vapor recoil on float-zone type surfaces has not been adequately studied.

In the interest of limiting computational time, it is desirable to neglect surface deformation,
since it adds another iteration to the steady-state solution. This is especially true if it has only a

second-order effect. However, if it occurs to even a moderate extent, then it should be considered for

several reasons. First, in a system whose operation depends on sustaining a pressure difference
between a vapor and liquid, such as a screened LAD, extreme meniscus deformation could result in

retention loss. The normal stress balance in equation (45) includes several terms that compete in

dictating interface curvature. With certain parameter values, a combined flowfield/surface solution

may diverge in the iteration process, thereby indicating a numerical or physical instability.

In addition to altering the exposed surface area for heat transfer, a deforming interface may

also yield temperature distributions substantially different than the static nondeforming state.

Depending on the magnitude of the variation, this may cause a large deviation in heat transfer, which

would have ramifications for a system involving phase change across a porous interface.

Before attempting simultaneous solution of the flowfield and surface, it is desirable to

estimate the approximate deformation associated with each stress term in equation (45) and the

flow regimes covered in section VI. This points to the conditions leading to mechanical non-

equilibrium of the surface, and enables a more definitive comparison of terms in the normal stress

equation. The approach involves using the interfacial velocities, pressures and temperatures
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obtainedfor the nondeformingcasesin sectionVI to calculatenew surfacesbasedon the numerical
integrationproceduredescribed in section IV.C.

This approach is equivalent to assuming that the flowfield and temperature are independent of
surface geometry. Although it is probably adequate for small deformations (i.e., Ca = 0 and Cr = 0),

such an assumption would lead to erroneous results if the deformation was high. If the first-order

evaluation indicates significant deformation at values of Ca, Cr, and Vr within the ranges identified in

the section V, then the coupled solution must be considered. In addition, extreme deformation in the

form of surface inflection points could represent sources of mechanical nonequilibrium.

B. Surface Tension Dependence

Surface tension variation along a nonisothermal meniscus will contribute to deformation not

only through the convection arising from thermocapillary stress but also the adjustment of capillary

pressure to changes in temperature. The latter effect is manifested by the (1-Cr Tr)-I term in

equation (45), where Cr represents the sensitivity of surface tension to temperature. Warmer

regions of the surface, T > Tt, will assume larger curvatures 1¢(= Oot/Os) to offset the reduction in

surface tension. The conditions imposed by Cr are evinced by expressing T in terms of Cr and Yr.

Rearranging and substituting equation (43) into equation (26) yields:

Cr)t l
Y = - _ (T-TO + Yt • (124)

At the maximum temperature, T= Th = IAT] + Tl, which when substituted into equation (124)

yields:

?' = ?t(1-Cr) . (125)

For a normal fluid in which Oyl_T < O, Cr must be less than unity to ensure that y < Yr.

Having Cr > 1 represents a situation where O71OT > 0 and y > 7t. A limitation of the linear equation

of state for T, equation (26), and definition of Cr becomes obvious when Cr = 1. In this case, the
maximum temperature limit Th corresponds to the critical temperature, and with superheating or very

high Bi, 7 vanishes and t¢ --4 oo at some point on the surface. Thus, the condition of Cr --- 1 indicates a
need for either a higher-order approximation for y or a critical state model of the surface. The

parameter bounds from section V, however, indicate that the value of Cr is low enough to justify use

of a linear approximation. In addition, it will be shown that the influence of Cr only becomes apparent

for Cr > 0.9, which is well above the limits expected for a normal fluid.

The first-order influence of Cr is examined by applying a simplified version of equation (110)

in which all terms, besides (1-Cr y,')-l, are neglected. Since the only factor causing deviation from a

circular profile is T = T(xl ), the relationship is:

Oa Z (126)
1¢= -_s = 1- C r T "
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Employing the approachoutlined in sectionIV.C, one calculatescontactangle estimatesby
integratingalong the surfaceandvarying E until the contactanglecondition at Ix'l = 0.5 is satisfied.
Surfacetension-induceddeformation is first examinedusing the basic state interfacial temperature
distributions (Ma= 0 andRs = *,,). Half-cavity meniscus contours for Bi = 1, 10 and 102, and Cr= 0.5,

0.9, 0.99 and 0.999 are shown in figure 50. The responses to the two heating modes are opposite.

With subcooling, the temperature at the center-line (x' = 0 in meniscus-centered coordinates) is a
maximum and decreases to the minimum Tt at the side walls (Ix'l - 0.5), that is OT/Ox' < 0. Because

of the lower surface tension in the middle of the cavity, the equilibrium surface assumes a higher

curvature relative to the side wall region. At low Bi, the effect is small, even at high Cr, because

temperature remains close to the minimum limit along the entire surface. At high Bi, the temperature

in the center approaches the maximum T _ 1 and the surface becomes more sensitive to Cr.

Although the deformation appears to be quite large at high Bi, it is still effectively negligible for Cr <
0.5.

With superheated boundaries, OTlOx' > 0, and temperature decreases towards the center-

line. Unlike subcooling, the condition of maximum curvature occurs at the side wall since 7 is a

minimum in this region. Additionally, the higher surface tension in the center requires a lower

curvature to maintain stress equilibrium. The net result is a flattening and raising of the meniscus
with respect to the contact line at Ix'l = 0.5. At low Bi, the temperature remains close to the side

wall value along the entire surface and is more sensitive to variations in Cr. At higher Bi, however,

the lower average temperature yields a surface that is less sensitive to Cr.

The influence of convection due to thermocapillary stress, evaporation, and condensation on

y-induced deformation reflects the departure of interfacial temperature from its basic state

distribution. As shown in figures 21 and 22, evaporation and condensation both increase the average

temperature of the interface. This tends to reduce the average temperature gradient for evaporation
but increases it for condensation.

The effect of pure interfacial flow on surface geometry is shown in figure 51 for Bi = 1 and Rs =

10 -1. Although the differences are quite small, condensation appears to increase deformation relative

to the basic state, while evaporation decreases it. The surface is also more sensitive to Cr for both

heating modes because of the increase in average temperature. Although it is not shown, the

deformation at high Bi (= 102) is the same as the basic state, because the temperatures for all three
regimes are essentially equivalent. Note that the influence of Cr is negligible for all cases in which Cr
<0.9.

The sensitivity of surface morphology to pure thermocapillary flow with Ma = 103 and Bi = 10

is shown in figure 52. Unlike the previous cases, the thermocapillary convection associated with

subcooling tends to lower interfacial temperature relative to the basic state, while superheating

raises it. Consequently, the subcooling regime exhibits less sensitivity to Cr than its basic state

counterpart in figure 50. The deformation associated with superheating, however, behaves very
similarly to the basic state at Bi = 10.
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C. Vapor Recoil Dependence

The term "vapor recoil" refers to the momentum change exerted on the meniscus due to

liquid/vapor phase change. The recoil force is represented by the VrT 2 and VrA(T 2) terms in

equations (45) and (110), respectively.
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Surface tension sensitivity (Ma = 103, Rs = 103, and Bi = 10).
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For both heating modes,recoil varies with the squareof the temperaturedifference, and is
always positive. Regardlessof the direction of masstransfer, it tends to raise surface curvature
towardsthe side walls and yields a force pointing into the liquid. From thejump massbalance,we
know that pv(Virli) v = pl(Vini)l. Because fp = Pt/P,, >> 1, the magnitude of the vapor momentum flux,

Pv =j(Vini)v, is always greater than that of the liquid, Pv > PI, regardless of their relative directions.

With evaporation, the difference between momentum entering and exiting the surface is negative
Pt-Pv < 0, and yields a net force opposing the direction of flow. With condensation, the net

momentum entering the surface is Pv-Pz. Since each of these terms is negative, Pv-Pz < 0, and the

net force again points into the liquid.

The effect of recoil is examined using another simplified version of equation (112), namely:

_ _ = ]_+VrA(T 2)
l_ - -_s (127)

As before, the basic state temperature distribution is employed as an initial reference.

Although this case lacks the influence of internal convection, it does enable a consistent comparison

with section VII.B. Figure 53 shows equilibrium surface geometries for Bi = 1, 10 and 102. The

temperature magnitudes for superheating and subcooling are equivalent and should yield the same

recoil force distribution. The disparity between the subcooling and superheating curves in figure 53
are attributed to slight differences in the steady-state numerical convergence.

Ignoring these discrepancies, one sees that over the entire range of Bi, raising Vr tends to
reduce curvature in the middle of the cavity and flatten the surface relative to the contact line. Since

0(A(T2))/0x ' > 0, the recoil contribution to Oo_/Os increases toward the side wall. That is, the

curvature near the side walls must be higher to compensate for the increased normal force directed

into the liquid. At high Vr, the center-line curvature can become negative and form an inflection along
the meniscus.

It is evident from figure 53 that the sensitivity to Bi is maximized between 1 and 102. This is

due to the manner in which A(T 2) = T2-To 2 varies along the surface. At the lower limit of Bi (= 1),

interfacial temperature, mass flux and A(T 2) follow a moderate variation and increase towards the

side wall. The surface assumes a negative curvature in the center to accommodate the 15 ° contact

angle constraint and the increasingly positive contribution of A(T2). At higher Bi (= 10), this

variation is more pronounced, thus causing a larger change in curvature. Above a certain value of Bi,

the interfacial temperature assumes a flat distribution in the center followed by a sharp increase or
decrease at the interline. This is reflected in the plot for Bi = 102. Near the center-line, the

temperature is low and fairly constant, and the contribution to curvature is negligible A(T 2) --- 0.

Although A(T 2) rises sharply in the side wall region, its influence on overall curvature is slight.
Hence, the deformation diminishes compared to the lower values of Bi.

The influence of thermocapillary convection is illustrated in figure 54. For these plots, the
surface temperatures corresponding to Ma = 103 and Rs = 103 is used. Although interfacial flow was

ignored in these steady-state solutions, the temperatures still reflect the general influence of
thermocapillary convection.
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With subcooling, thermocapillarystressshifts the temperaturegradient toward the side wall
andflattens the temperaturedistribution in the centerof the cavity. This is similar to increasingBi in
that the meniscus becomes less sensitive to recoil. One also sees that the deformation at Bi = 10 is

much less than the basic state, because of the temperature depression associated with upwelling.

This phenomenon yields a situation where the recoil contribution decreases from the center-line to

the point of maximum surface temperature. This trend reverses beyond the temperature maximum

and causes a sharp upturn in the surface near the side wall. At the upper limit of Bi (= 102),

deformation is similar to the response based on the basic state in figure 53.

Figure 54 shows an opposite trend with superheating. The difference is due to the

temperature trough in the middle of the cavity that arises from convection along the surface. The

value of A(T 2) at the center-line is consequently higher and causes a large change in curvature in the

middle of the pore. At low Bi (= 1), the deformation is much greater than the basic state. At higher

Bi (= 10), the deformation is large enough that a single-valued solution at Vr = 50 does not exist.

The inability to account for a multivalued surface is due to the limitation of the numerical procedure,

in which T is expressed as a function of Xl rather than s. In cases where the surface loops over itself

between 0 < Ix'l < 0.5 to satisfy the acute contact angle constraint at Ix'l = 0.5, the approach of

expressing T(Xl), Pd(xl), etc. is completely inaccurate. However, it is likely that such configurations

are inherently unstable and susceptible to pinching off near the points where dy_s)ldx'_ ,,o and

d2yfs)/dx '2 > 0. At the upper limit of Bi (= 102), the influence of the temperature trough diminishes

and the deformation closely approximates behavior of the basic state-based response.

The sensitivity of deformation to pure condensation and evaporation is shown in figure 55.
Unlike the basic state behavior in figure 53, the response to each heating mode is quite different.

With condensation, accumulation of warm liquid around the center-line increases the temperature

gradient substantially. This, in turn, yields a larger change in AT 2 and oc from Ix'l = 0 to lx'l = 0.5, and
more deformation than the basic state. The change in AT 2 and o_ is related to the modified stress

sensitivities shown in figure 24.

With condensation, the increase in 02 relative to the basic state is highest at low Bi and

decreases as Bi _ ,,_. This trend is reflected in figure 55 by the deformation for Bi = 1 being higher

than that for Bi = 10. Although this appears to contradict the trends in figure 53, the deformation at

Bi = 10 is still much higher than its basic state counterpart. Consistent with figure 24, one sees that

the deformation at Bi = 102 is essentially the same as the basic state distribution.

With evaporation, the temperature gradient decreases with respect to the basic state. This is

illustrated in figure 24, which shows that O2/O2b < 0, and O2/O2b _ 1 as Bi _ _. The consequence

of this is that at low Bi (= 1), the deformation is considerably less than its basic state counterpart.

With higher Bi (= 10), surface deflection is greater, but is still restricted by the flattened temperature
profile. At the upper limit of Bi (= 102), the greatly diminished convection yields a surface equivalent

to the basic state-based response.
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Figure 55. Recoil sensitivity (Ma = 0 and Rs = 10-1).
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D. Dynamic Pressure Dependence

In chapter VI, it was shown that fluid motion can yield substantial pressure variations along
the free surface. This pressure Pd falls directly out of the Boussinesq approximation and is best

viewed as a deviation from hydrostatic pressure. The influence of Pa on surface morphology is

manifested by the CaAPd term in equation (110). Ca arises as the dimensionless coefficient for Pd

due to our application of viscous scales. This is advantageous because it permits a direct comparison

with the effects of vapor recoil and viscous stress. CaAPa is expressed as a difference to emphasize

that the solution depends on pressure change along the surface and not the absolute value per se.
This form underscores the fact that the Pa contribution at the center-line is included in the initial

curvature estimate, and that the change in curvature as Ix'l _ 0.5 is dictated by the gradient of Pd

along the surface.

The results of section VI showed that the pressure variation becomes significant at low

contact angles. This was illustrated in figures 36 and 39 which showed that in all cases the pressure
magnitude is relatively small in the center of the cavity but increases dramatically at the side walls.

(112):

To assess the first-order influence of Pal, one employs the following simplification of equation

_ _a = y.,_CaAPd (128)
K" -- --_-S

The sensitivity to Pd is examined using the pressure distribution for pure thermocapillary flow

in which Ma = 103 and Rs = 103. The magnitude of the pressure variation, as illustrated in figure 36,

increases dramatically at the side walls and becomes more pronounced at high values of Bi. The

influence of this change on surface geometry is shown in figure 56, which shows equilibrium surfaces
forBi = 1, 10, and 102.

With subcooling, the pressure increase towards the side walls is manifested as a suction that

pulls the surface down in the middle of the cavity. The magnitude of the deformation becomes larger

with increasing Ca, and, like the effect of surface tension in section VII.B, causes a depression in the

middle of the meniscus. Equation (128) shows that a positive Pd gradient translates to an

increasingly negative contribution to curvature. Since the center-line curvature is positive, this can

yield an inflection in the surface at a high enough value of Ca. This inflection is evident near the side
wall region of the curve corresponding to Bi = 1 and Ca = 1.5x10 -4. It occurs close to the side wall,

since the pressure is comparatively much smaller along the rest of the surface. Another interesting

aspect of the inflection is that it causes a negative curvature at the contact line. It was found to be

difficult to obtain a solution for Ca greater than this limit. As with recoil, the surface becomes

multivalued at a point close to the side wall above a certain value of Ca.

The surface is much more sensitive to Ca at higher Bi because of the larger pressure gradient.
This is evidenced by the surfaces in which Ca = 3.5×10 -5 and 2.0x10 -5 for Bi = 10 and 102,

respectively. It also appears that the magnitude of the center-line depression depends on the total

pressure change from x' = 0 to lx'l = 0.5, while the location of the inflection leading to a multivalued

condition depends on the actual gradient. That is, a more uniform change in pressure will shift the
inflection point away from the side wall.
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These trendshave important ramifications for the mechanicalequilibrium of surfaceswith
zero contact angles.When o9 = 0, the surface is already at a multivalued limit on the side wall.
Hence, any stress-related effect that provides a negative contribution to curvature will be impossible
to accommodate using the solution procedure in this study.

The deformation in response to superheating reflects a positive contribution to curvature, and

behaves similarly to recoil. Here, the negative dynamic pressure gradient causes a suction at the
side walls that raises the meniscus center relative to the interline. From a numerical standpoint, the

positive contribution to curvature requires a reduced and possibly negative curvature in the center.
At low Bi (= 1), the meniscus contains an inflection at Ca = 10-3, which is nearly an order of
magnitude higher than the maximum Ca identified for subcooling. In addition, this value does not
appear to be close to the multivalued limit, as in the case of subcooling. Although the overall
pressure gradient associated with superheating is greater than subcooling, the surface can support a
larger change in contour angle and higher values of Ca before the multivalued limit is reached.

The sensitivity to Ca increases by an order of magnitude from Bi = 1 to Bi = 10 and 10 2. In all
of the superheating cases, most of the curvature change occurs near the side wall, while along the
rest of the surface, it remains fairly constant. As a consequence, the inflection point, as with
subcooling, lies close to the side wall. We also note that at very low Ca (<10-5), the meniscus
deformation is rather slight and the magnitude of variation is the same for subcooling or
superheating. At higher Ca, the surface for subcooling is much more sensitive to pressure variation.

The first-order surface response based on the steady-state solution for combined
thermocapillary/interfacial flow (Ma = 103, Rs = 10-1 and Bi = 102) is shown in figure 57. As noted
before, the surface pressure distribution reflects a superposition of superheated thermocapillary flow
and evaporation for the superheated case, and subcooled thermocapillary flow and condensation for
the subcooled case. Consequently, the side wall gradients for these regimes are greater and yield an
increased sensitivity to Ca.

1.2

1.0

.8

x2

.6

.4

.2

Subcool

Ca=0 6
10-

w

I I I I

0 .2 .4 .6 .8

xl

Figure 57. Pressure sensitivity (Ma = 103, Rs = 10-I, and Bi = 102).
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E. Viscous Stress Dependence

The effect of viscous stress on surface morphology is represented by the 2CaVi,jnjni term in

equation (45). Previous studies have applied it directly in this form, thus requiring calculation of the

velocity gradient normal to the surface. With the integral method used here, it is preferable to

transform the term into an expression that does not involve the velocity gradient. This improves

accuracy and separates the two components of viscous stress which occur only when the surface is

curved and volatile. One first employs the chain rule and expands viscous stress into the following
form:

Vi,jn jn i = (Vin i),jn j- Vin jn i,j . (129)

(Vini),jrlj, is the normal gradient of the mass flux. Note from the equations for j and interfacial

equilibrium (equations (7) and (40), respectively), that Vini = T/Rs. Taking the normal gradient of

this relationship and expressing T jnj in terms of equation (54) yields the final result which equates

the flux gradient to temperature:

(Vin i),jn j = -SvT . (130)

SvT is termed the "flux component" and represents stress arising from flow normal to the

surface. Sv is the so-called viscous stress parameter and is defined as Sv = Bi/Rs. The normal vector

product of the Vinjni.j term in equation (129) can be converted by njni,j = -sisj,j, and substituted with

equation (130) into equation (129) to yield:

vi,jn j n i = -SvT+ Visis i,j . (131)

Visisj, j is the so-called "curvature component." With a flat nonvolatile surface, both
components vanish and remove the influence of viscous stress. For instance, 1/Rs = 0 and Sv = 0 for

a nonvolatile surface. With a flat interface, ni and si are constant, and the condition sj,j = 0 must hold.

Although the Visisj,j term in equation (131) only makes a contribution when the surface is curved, it

can also vanish if the tangential velocity is negligibly small, and the flow is normal to the surface.

The flux component is expressed in a form suitable for the numerical procedure described in

section IV. However, the unit vectors in the curvature component can be expressed more

conveniently by expressing the tangent vector in terms of contour angle. That is, si = cos (XSil +

sin 0_8i2 and sj,j = (-sin o_ 5jl+cos ct 5j2)O(:tlOxj. Substituting these equations into Visisj, j yields:

Visisj,2= (V1 cos ot + V2 sin ot) (c°s2 _-. s--in-2ot/0ot
COSotSlnot /_"

(132)

One sees that this relation is inappropriate for flat regions in which t_ -- 0. The value near x' =

0 is solved by replacing O_0s with cos oc0_0Xl. Upon expanding the expression and taking the limit

as xl ---) 0.5 (or x' ---) 0), one sees that cos o_ ---) 1 while sin o_ ---) 0. This leaves an equation that

becomes indefinite as x' --o 0, that is:

lim(Visisji) = (VI) dot (133)-,- si--ff-8c°s3ot

Equation (133) is solved by applying L'Hopitals rule and differentiating both numerator and

denominator by Xl. After dividing the 0(x/Oxl terms out and noting that cos a = 1, one is left with:
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li, (v,Sisj,j)= v,,, . (134)

Visisj, j becomes important only when the curvature or tangential component of velocity is high.

It is the latter condition that distinguishes the viscous stress between volatile and nonvolatile

flowfields. Figure 58 compares the surface distributions of Vinjni,j (= -Visisj,j) for pure thermocapillary

(Ma = 103) and pure interfacial flow (Rs = 10-1). In the case of thermocapillary flow, the Vinjni,j

profiles for superheating and subcooling are opposite in sign because of the different directions of

flow. With subcooling, the distribution is flat in the middle of the meniscus, but exhibits a sharp jump

and change in sign near the side wall. The magnitude of this jump is more pronounced at higher Bi

because of the larger stress gradient and surface velocity. In addition, the convection of the surface

temperature gradient and stress toward the side walls causes the magnitude of this peak to

approximate the variation in the center. The change in sign near the corners occurs at the point
where c_ = 45 ° and sj,j = 0. For x' above this point, sj,j < 0, and for values below it, sj.j > 0. The
crossover location is the same for all the cases in figure 58, since the surfaces share the same

circular geometry.

The variation of Vinjni,j for superheated thermocapillary flow is more pronounced than

subcooling. This case also reflects a very different relationship between stress in the middle and

corner regions of the surface. The magnitude is higher in the center due to the convection of surface

liquid into the interior and concentration of the temperature gradient around the center-line.

Consequently, IVinjni,jl is noticeably larger than the value at the side wall. Although different, the

magnitudes in both of these regions are much greater than subcooling because of the higher
circulation. With increased Bi, there is an appreciable increase in stress because of the more

pronounced temperature gradient around the center-line. At the upper limit of Bi, however, the

gradient in the center flattens and the magnitude of Vinjni,j drops off slightly.
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Figure 58. Vinjni,j versus xl.
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As expected,the influenceof Vinjni,j for pure interfacial flow is negligible, since the tangential

velocity for these cases" is extremely small. Except for the small contribution due to the side wall

bias of hu near the upper corners, the surface velocity is defined primarily by its normal component.

Because of the vanishing tangential component, the contribution of curvature to viscous stress can

be ignored.

The first-order influence of Viscous stress on deformation is analyzed using the same

approach from before. The simplified equation for curvature in this case is:

tc = X.--2Ca(SvAT-A Visisj,j) , (135)

where temperature and velocity are referenced with respect to center-line values according to AT =

T-To and AV/= Vi-Voi.

The surface response is first examined using the basic state temperature distributions as a
reference. Since there is no internal convection associated with this regime, only the influence of SvT

can be examined. Figure 59 shows the half-cavity surfaces with subcooled and superheated

boundaries for Ma = O, Rs = to, and Bi = 1, 10 and 102. The sensitivity is characterized in terms of the

product CaSv. Unlike recoil, the flux term can assume either a negative or positive deviation from the

static isothermal surface, depending on the temperature gradient relative to the center-line.

With subcooling, the higher mass flux near the side walls exerts a force into the liquid that

depresses the surface. At low Bi, the deformation is comparatively small since the temperature
gradient is low. The surface morphology is most sensitive at Bi = 10, since this represents the case

of maximum gradient. The deviation drops off at higher Bi because of the shift in temperature

gradient towards the side walls. The surface response to the viscous stress flux term is much more

sensitive with superheating, as shown by the smaller values of CaSv in figure 59. The difference

between subcooling and superheating depends less on convection and more on the numerical
robustness associated with terms that add to the curvature in equation (110). With subcooling the

flux term is additive, and a large negative curvature at the center-line can be employed to

accommodate a large variation in contour angle beyond the inflection point. For instance, with co =

15 °, a total angle change of 165 ° beyond the inflection at the muitivalued limit is possible. With
superheating, which is subtractive, the angular change is only 15 °.

The flux component for superheating yields a less tractable andmore unstable surface than

subcooling. On a physical scale, however, the magnitude of this effect is small compared to that of

pressure and recoil. For instance at the worst case of Bi = 10, an Rs of 10-1 and moderate Ca value of
10 -3 yield CaSv = 10-1. The deformation for this case is negligible for both condensation and

evaporation.

Figure 60 illustrates the influence of viscous stress using the temperature and velocity

distributions for pure interfacial flow, where Rs = 10 -1. It was noted earlier that because of the

negligible tangential velocity, the influence of the curvature component is nonexistent. In addition,

the response shown in figure 60 is more relevant than figure 59, from a physical standpoint, since it

includes the effects of convection on the temperature field. Here, Sv is fixed at the value appropriate

for each case, that is Sv = Bi/Rs, and vary Ca. It is evident that the surface is relatively insensitive to

Ca, and that the deformation is highest at Bi = 102. Because of isotherm compression, the gradient

with superheating is less thus restricting the influence at Bi = 10. It was also noted that the
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magnitude of deviation is about the same for subcooling and superheating because condensation

tends to increase the temperature gradient.
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Figure 59. Viscous stress sensitivity (basic state temperature).
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Figure 60. Viscous stress sensitivity (Ma = 0 and Rs = 10-1).
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The response to pure thermocapillary flow is quite different. This case, which is based on the

steady-state solution for Ma = 103, is shown in figure 61. As noted before, the high interfacial

resistance effectively removes the flux term from consideration. Thus, the surface is dictated

primarily by the change in curvature and Vinjni,j. Figure 61 indicates that the deformation response is

opposite to that for pure interfacial flow and is more sensitive to changes in Ca. In addition, the

deflection increases with higher Bi due to the larger velocities along the surface.
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Figure 61. Viscous stress sensitivity (Ma = 103 and Rs = 103).
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F. Summary

In this section, the different terms in the equation for surface curvature were examined and

their first-order effect on surface morphology was evaluated. Results showed that the influence of

thermally induced surface tension variation and viscous stress is practically negligible, y-induced

deformation is significant for values of Cr close to unity. This limit, however, is much greater than the

bounds identified in section V, and for Cr < 0.5, the surface tension term in equation (45) has hardly

any influence on surface morphology. The deformation associated with viscous stress is also

relatively small. In addition, it appears that the flux and curvature components of this term exhibit
opposite behavior and tend to counteract each other in the case of combined convection.

The two most important terms are vapor recoil and dynamic pressure. In general, the

influence of recoil is independent of heating mode. It is always manifested in the -x2-direction and

increases towards the side walls. This tends to reduce center-line curvature, while raising _c near

the contact line. At high Vr, the center-line curvature can become negative, and, if Vr is large enough,
lead to a multivalued surface relative to xl. It was also found that subcooled thermocapillary flow

suppresses deformation, while superheating promotes it. These differences, however, vanish as

Bi --->_. Condensation and evaporation exhibit opposite behavior. Condensation tends to increase

deformation by raising the surface temperature gradient, while evaporation suppresses it. Unlike

•),-induced deformation, one expects recoil to exert an appreciable influence on surface geometry,

since Vr as high as 10 to 102 are feasible for Ca ranging from 10 -4 to 10 -3.

The influence of dynamic pressure on surface geometry is quite different for subcooling and

superheating. In addition, the large pressure gradients encountered with low contact angles makes

the surface extremely sensitive to flow-induced pressure variations and Ca. It is likely that with the

pressure distributions obtained in the steady-state analysis, the surface could exhibit multivalued

behavior even at low to moderate values of Ca. This is especially true for subcooling which is most

sensitive to this effect. Thus, dynamic pressure represents the most likely source of mechanical non-

equilibrium.

With superheating, dynamic pressure and vapor recoil act in the same direction. Recoil tends

to depress the surface near the side wall, and dynamic pressure does the same by producing a

suction in this region relative to the center-line. Both terms make a positive contribution to
curvature, and relatively large values of Ca can be accommodated before the surface becomes

multivalued. With subcooling, however, the recoil and pressure exhibit opposing effects. Recoil acts

in the same direction as before, and depresses the surface near the side walls. Dynamic pressure,

however, causes a suction and drawing down of the surface around the center-line. This represents a

negative contribution to curvature and greatly reduces the range of Ca that can be accommodated
before the multivalued limit is reached.

VIII. PORE FLOWFIELDmDEFORMABLE SURFACE

A. Introduction

The assumption of a frozen or fixed meniscus is oftentimes inappropriate when considering

two-phase thermocapillary phenomena in very sinai1 pores and cavities. This is especially true for
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highly wetting fluids with low contactangles.Results from the first-order analysis in section VII
showed that surfacemorphology is most sensitiveto the flow-induced deviation from hydrostatic
pressurePd and the recoil force caused by interfacial mass transfer. It was also found that, within

the parameter ranges identified in section V, the surface can acquire an inflection and change in the

sign of curvature. Even with a moderate value of Ca (--- 10-3), the inflection can become pronounced

enough to form a multivalued surface between the center-line and sidewall.

In this section, the steady-state problem in section VI is reexamined while accounting for a

deformable meniscus. The objective in doing this is twofold. From an applications standpoint, the

interest is in determining whether the convection and deformation caused by changes in pressurant

conditions could lead to retention loss in the pores of liquid acquisition device screens. The flexibility

of modeling superheated and subcooled boundaries with different values of interfacial resistance
allows us to address the cause of retention loss with heated hydrogen vapor and explain the

differences in performance exhibited by helium and hydrogen.

On a general level, the simultaneous influence of dynamic pressure and vapor recoil on

surface geometry is investigated, and the extent to which deformation alters the streamfunction,

pressure and temperature distributions obtained in section VI is determined. Stability as it is applied

in the study of thin films and capillary jets is not addressed. Rather, the surface's ability to maintain
mechanical equilibrium is evaluated by determining whether solutions exist that simultaneously

satisfy the equations of fluid motion, temperature and surface geometry. Identification of possible

metastable states represented by the surface inflections noted in section VII is also of interest.

Although these states may be solvable numerically, their liquid geometries are likely prone to slight

perturbations in pressure or temperature and indicative of the onset of retention loss.

B. General Effects of Dynamic Pressure and Recoil

Within the context of the one-sided model, the only parameters that directly reflect a change

in vapor/liquid equilibrium are Rs and Bi, where Vr o_ Rs-2. All others, except contact angle, are fixed

at values approximately representative of a 1 I.tm to 10 I.tm liquid hydrogen pore subjected to

superheat/subcooling levels of 10 -1 K to 1 K, namely Ma = 102, Cr = 10 -1 and Ca = 10 -3. Instead of

considering a zero or very small contact angle, which would properly model hydrogen characteristics,
one sets 09 = 45 °. With subcooling, it was very difficult to obtain solutions at co = 15 °, let alone ~0 °,

due to the extremely large interline pressure gradients. By employing a higher 09, the pressure
gradient is reduced, and the surface is less sensitive to variations in Pd. The advantage of this is

that it yields a clearer picture of the deformation associated with dynamic pressure.

First the influence of interfacial equilibrium is examined while holding heat transfer

characteristics and all other dimensionless groupings constant. Rs and Vr are varied to model

different levels of vapor/liquid equilibrium along the surface, but the sensitivity of latent heat

transport to mass transfer is ignored by assuming a constant Bi (= 10). These conditions were

examined before in the contact angle investigations of figures 37 and 38. Although the cases

illustrated in these figures were solved assuming a constant meniscus, they will nonetheless provide

a good reference for examination of deformation. First the focus is restricted to thermocapillary

effects by considering the nonvolatile case in which Rs = 103. After that, progressively lower values

of Rs (and higher Vr) are examined to determine how extensively recoil either augments or offsets

the influence of dynamic pressure.
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For the nonvolatile case,one seesfrom equation(48) that the extremely low value of recoil
parameter(i.e., Vr--- 10 -6 withfp = 103) suggests that the surface is dictated by dynamic pressure

and unaffected by recoil. The steady-state solutions for this case are shown in figure 62.
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Figure 62. Ma = 102, Rs = 103, Bi = 10, and Cr = 10-l.

To better illustrate deformation, the static isothermal solution (SIS) for the co = 45 ° surface in

figure 37 is superimposed on the plots in figure 62. One sees that the behaviors of the two heating

modes are quite different. With subcooling, the surface consistently diverges to a multivalued shape,
and one is unable to obtain convergence between the flowfield and surface solutions. The plot in

figure 62 actually represents the steady-state solution after the 16th surface iteration. With

subsequent iterations, the depression near the center-line grows until the surface becomes

multivalued at Xl = 0.I and 0.9. An attempt was made to run the case with a finer 34 by 25 element

grid, but the same instability was encountered. Initially, the surface appears to converge in the test
following each steady-state solution. However, after -16 iterations, it begins to diverge.

The shift from convergent to divergent behavior indicates that interfacial pressure is strongly

influenced by the contour and growing depression in the middle of the cavity. During the first few
iterations, the meniscus assumes an inflection to accommodate the negative contribution of Pd tO the

contour angle integration. The flat surface around this inflection extends the high pressure region
near the interline into the center and drives the depression even lower. Another contributing effect is

the increase in circulation intensity with each iteration pass. Figure 62 shows that the circulation for

the deforming case is greater than its fixed counterpart in figure 37. The depressed surface around
the center-line serves to increase the x2-component of the thermocapillary stress force Bi02, and

promotes circulation. Consequently, the deformation associated with subcooling has the same
stress-related effect on the interline pressure gradient as reducing contact angle.

With superheating, convergence to a stable steady-state solution occurs in only eight surface

iterations. As it approaches this state, the meniscus flattens and decreases in area due to the

pressure drop towards the wall. Although the deformed flow field is very similar to the case in figure

37, one notable difference is the slightly reduced half-cavity circulation. The deformation here models
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theeffectof increasingcontactangleandreducingBi02. This lessens the interline pressure gradient

and ensures stable numerical convergence. As long as the surface retains a positive curvature,

superheated thermocapillary flow should promote mechanical equilibrium along the interface.

Next, the effect of reducing Rs to 1 is examined while holding Bi and Ma constant at 10 and

102, respectively. This change not only increases the influence of interfacial flow on the flowfield, but
it also yields a substantially larger recoil parameter value of Vr = 1. One sees in figure 63 that, apart

from the change in position of the surface, the temperature fields do not vary much from the

distributions in figure 37. As before, it is impossible to obtain a steady-state solution for subcooling.
The flowfield shown here corresponds to the 16th surface iteration. However, the number of

iterations required to reach the multivalued condition is greater than the case in figure 62. This

suggests that recoil does provide an offsetting effect and suppresses the instability associated with

dynamic pressure. With superheating, reducing the interfacial resistance causes a slight rise in the
surface relative to the case in figure 62. Since pressure and recoil both provide positive contributions

to curvature, the deformed surface exhibits the same stabilizing effect on pressure gradient.
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Figure 63. Ma = 102, Rs = 1, Bi = 10, and Cr = 10-l.

It appears that vapor recoil can reduce or possibly eliminate the mechanical nonequilibrium

arising from subcooled thermocapillary flow. This is verified in figure 64 which shows the solutions

corresponding to Rs = 10 -1/2 = 0.3162 and Vr = 10. The subcooled case is completely stable and

slightly raised with respect to the SIS curve. The order of magnitude increase in Vr is sufficient to
offset the influence of dynamic pressure. With superheating, one encounters the same flattening of
the meniscus as before. Because of the increased recoil, the change from the static isothermal state

is much greater. Deformation also influences interfacial heat and mass transfer. In the nondeforming

cases in figure 38, the superheated regimes had generally larger circulations and throughputs than

their subcooled counterparts. When deformation is considered, however, the throughput and

circulation intensity for subcooling is greater. The increase in throughput is attributed to the larger

exposed surface area for subcooled flow, while the difference in circulation is due to the flatter
surfaces and lower Bi02 associated with superheating.
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Figure 64. Ma = 102, Rs = 10 -1/2, Bi = 10, and Cr = 10-1.

All of the subcooled cases considered so far have included the presence of thermocapillary
flow and its destabilizing effect on surface morphology. In figure 65, one neglects this form of

convection and examines the case of pure interfacial flow. By ignoring surface stress (Ma = 0), one
removes the strong interline pressure gradient arising from thermocapillarity and directly assesses

the influence of interfacial temperature on deformation. Comparison of the plots in figure 65 indicates

that the difference in surface geometry for the two heating modes is relatively small. The slight
difference reflects the manner in which interfacial convection either increases or decreases thermal

potential. With subcooling, condensation of warm vapor tends to reduce 11 and recoil by lowering the

temperature difference between the liquid and vapor. With evaporation, however, convection from the

bottom of the cavity increases the liquid/vapor temperature difference and recoil force. This stronger

recoil force, in turn, leads to a more pronounced flattening of the meniscus.

The results, so far, have coincided closely with the first-order behavior investigated in

section VII. One aspect that has not been addressed is the effect of surface inflections on stability.

One is interested in determining whether steady-state solutions exist for situations involving a

change in the sign of surface curvature.
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Figure 65. Ma = O, Rs = 10-1/2, Bi = 10, Cr = 10- l, and Ca = 10 -3.
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The pressure and recoil-related deformation resulting from superheating causes an upward-

pointing bulge in the middle of the meniscus. Since the surface in figure 64 is nearly perfectly flat, it is

probable that a further reduction in Rs should yield an inflection and negative curvature at the center-
line. This was tested by reducing Rs from 10-1/2 to 20 -1/2 and doubling Vr from l0 to 20. The resulting

steady-state flowfield is shown in figure 66.
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Figure 66. Superheating--Ma = 102, Rs = 20 -1/2, Bi = 10, and Cr = 10-1.

Apparently, a stable solution can be obtained with a substantial negative curvature at the
center-line. A unique aspect of the iteration procedure is that once the inflection is reached, recoil-
related deformation serves to increase the exposed surface area, while at higher Rs, it tends to

reduce it. The larger area causes an increase in flowrate, surface potential, and temperature, all of

which contribute to a larger recoil force. Such a situation could be unstable if the area-increasing

effect of recoil and temperature-raising influence of convection reinforces each other. As it turns out,

the average temperature, which is more indicative of temperature distribution for a variable surface,

actually decreases once the surface passes the inflection point. If recoil exhibits a greater

dependency on this parameter, then such a situation would promote stability up to and beyond the
multivalued limit.

Although convergence was achieved in the case shown in figure 66, the stability of inflections

with negative curvatures is still questionable and deserves further investigation. With subcooling,
one failed to obtain a stable, pressure-dominated surface with any clearly evident inflection. The

closest that this report came to this condition was at Rs = 5-1/2, where a surface that projected

slightly below the SIS contour was obtained. As figure 67 shows, it is not apparent whether this
surface contains an inflection. For all values of Rs > 5 -1/2, the iteration converged until the surface

reached an inflection, but because no convergence was established, the iteration diverged beyond

this point to the multivalued limit.

It appears that the interfacial pressure arising from thermocapillarity has a destabilizing effect
on a subcooled surface. The recoil mechanism, however, tends to counteract this effect and foster

mechanical equilibrium. It is probable that pressure-induced deformation is the chief cause for

retention loss in LAD screens with liquid hydrogen. In these devices, pressurization with a warm

vapor subcools the liquid, and through thermocapillary stress, establishes a suction that pulls the

109



meniscusdown in the middle of the pore. Although such conditions also promote the offsetting effect

of condensation-induced recoil, the Rs values corresponding to the pore size range of interest are too

low to produce a force large enough to counteract the destabilizing influence of dynamic pressure.
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Figure 67. Subcooling--Ma = 102, Rs = 5 -1/2, Bi = 10, and Cr = 10 -I.

The results also explain the difference observed between screens subjected to heated

pressurant and those heated directly by conduction. Heating through solid contact with the liquid
models the situation of a superheated pore. One would expect the establishment of a center-directed

thermocapillary flow pattern at the surface and a suction in the vicinity of the sidewalls. Unlike

subcooling, this would promote stability and result in a more robust meniscus.

C. Reduction In Accommodation Coeffident

In the previous section, the effect of changing vapor/liquid equilibrium while holding Bi

constant was examined. From the standpoint of liquid acquisition devices, this approach was

adequate for identifying causes for retention loss in situations involving pressurization with a heated

vapor. However, it is insufficient for explaining why this failure mode does not arise when the device

is pressurized with an inert gas, such as helium. To examine the influence of an inert pressurant, one
must account for the relationship between Bi and the level of equilibrium between the vapor and

liquid (i.e., Rs). As discussed in sections III and VI, maintaining a constant Bi is equivalent to

varying the evaporation number according to E _ Rs -l. This is physically unrealistic since E is

independent of vapor/liquid equilibrium, and depends solely on liquid properties and the imposed
temperature difference.

The degree of vapor/liquid equilibrium is embodied in the accommodation coefficient e in

equation (27), which represents the resistance to interfacial mass transport. Its value ranges from 0

to 1, and is lowered by the presence of foreign molecules in either the condensed or vapor phase. It

has previously been assumed that e = 1, which is appropriate for modeling kinetics of a pure liquid in

contact with its own saturated vapor. According to gas kinetic theory, an inert gas should suppress
interaction between the liquid and vapor, and from the standpoint of the one-sided model, decrease

the effective accommodation coefficient. One can see from equation (41) that a reduction in e is
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primarily manifestedas an increasein Rs and interfacial nonequilibrium. It is also apparent from

equations (57) and (48) that a lower e will yield a more convection-limited temperature distribution
(i.e., lower Bi) and a decreased recoil force (i.e., lower Vr and 02). For this study, the presence of an

inert gas can be modeled by increasing Rs and lowering the value of Bi according to equation (57),

while holding E constant.

The reduction in Bi reflects a decrease in latent heat transport between the liquid and vapor,

which tends to lower the interfacial temperature gradient and thermocapillary stress along the

surface. The consequence of this for subcooling is twofold. The lowering of Vr will decrease the

offsetting and stabilizing effect of recoil. However, the corresponding decrease in thermocapillary
stress will reduce circulation and the magnitude of the interline pressure gradient. The net result

should be a reduction in pressure-induced deformation.

The influence of an inert gas and reduction in accommodation coefficient is assessed by

comparing figures 63, 68, and 69. In this series of cases, E is held at 10 -1 while Rs is raised

incrementally from 1 to 2 to 10. The corresponding Biot number change is from 10 to 5 to 1. As noted

before, the subcooling regime in figure 63 is unsolvable due to the destabilizing effect of dynamic

pressure, while the superheating regime is stable.
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Figure 68. Ma = 102, Rs = 2, Bi = 5, and Cr = 10-1.
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At the next incrementof Rs (= 2), a stable solution for the subcooling regime is obtained. As

shown in figure 68, the steady-state flowfield solution exhibits a slight depression around the

center-line. Although no inflection is clearly apparent, the surface does become relatively flat near
the sidewalls. One also sees that the surface temperature gradient is lower than the case in figure

63, and causes a drop in circulation intensity and thermocapillary convection. With superheating, one

notes the same general thermal behavior. Here, however, the increase in Rs and reduction in interline

pressure gradient decreases the effect of recoil and dynamic pressure causing the surface to drop
closer to the SIS curve.

With Rs = 10 (fig. 69), a dramatic drop in circulation intensity is noted for both heating modes.
Considerable reduction in viscous losses at the sidewall eliminates the main factor causing the

difference in circulation intensity between subcooling and superheating. Most importantly, the

surface in both cases converges to a shape which is very close to the static isothermal geometry.

Reduction in accommodation coefficient appears to restrict both the intensity of circulation in

the pore and the deformation associated with pressure and recoil-induced stress. This is especially
true for subcooled thermocapillary flow, which, based on a simple decrease in e, can transition from

an unstable solution to one that is completely well behaved. Although this phenomenon was only

sketchily studied, it appears to provide a plausible explanation for the resistance to retention failure
exhibited in LAD tests with gaseous helium. Regardless of whether the gas presents a subcooled or

superheated environment, the transition into a more convection-limited interfacial temperature

distribution suppresses the pressure gradients associated with thermocapillary flow.

D. Summary

In this section, the steady-state solution of pores with a deformable surface was briefly

examined. Using parameter values approximately representative of liquid hydrogen exposed to its
own vapor, the response of the surface to several heating modes was evaluated, including

pressurization with heated vapor, screen (solid boundary) conduction, and pressurization with inert

gas. This was achieved by varying the level of vapor/liquid equilibrium for both superheating and

subcooling cases.

It was found that the surface was relatively immune to superheating. Pressure and recoil

forces both act in the same direction and depress the meniscus near the sidewalls, thus duplicating

the effect of large contact angles. This reduces the circulation associated with thermocapillarity,

suppresses pressure variation along the surface, and tends to stabilize the surface. With subcooling,

however, the surface was particularly sensitive to thermocapillarity and pressure-induced stress
effects which cause a suction and drawing down of the meniscus in the middle of the cavity. In fact,

one was unable to obtain a steady-state solution for the case of hydrogen exposed to its own vapor.

The response to an inert gas was evaluated by reducing the accommodation coefficient, which

increases Rs and decreases Bi. The less severe temperature gradient restricts circulation and

interfacial pressure gradient, and suppresses the mechanical nonequilibrium associated with

subcooled thermocapillary flow.
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IX. DISCUSSION & CONCLUSIONS

A. Introduction

The objective of this study was to determine if the convection arising from thermodynamic

nonequilibrium along the porous surface of LAD's could lead to the retention loss observed in

previous experiments with hydrogen liquid and vapor. The study also attempted to explain why

these devices seemed immune or only slightly prone to retention failure with either direct heating of

the screen surface or pressurization with heated helium gas. A major accomplishment was the

definition of a physical model that approximates the conditions in previous hydrogen retention

experiments. This provided a basis for evaluating appropriate heating and convection modes, and

examining first-order and coupled behavior of the free surface. The results provided a plausible

explanation for both the susceptibility and resistance to retention loss under different non-

equilibrium conditions. In obtaining these results, there were several intermediate findings that

supported the final conclusions and provided insight into this relatively new and unique problem.

Many of these are relevant to systems that involve liquid/vapor phase change in microgravity or

along a porous surface.

B. Discussion, Liquid Retention

Pressurization of a cryogenic vessel or direct unpressurized heating of a screen yields several

possible nonequilibrium states between the vapor and liquid. Pressurization of an LAD containing

liquid hydrogen with heated vapor represents a (1) subcooling of the liquid in the presence of a

saturated (or superheated) vapor. Direct contact heating of the screen, however, models (2)

superheating of the liquid in the presence of a saturated vapor. Introduction of an inert gas in a

hydrogen pressurization system represents a (3) subcooling of the liquid in the presence of an inert

gas. Finally, pressurization with helium has the same effect as (4) superheating the liquid in the

presence of an inert gas.

1. Subcooling with Saturated Vapor (Case 1). Previous tests showed that case 1 was most

prone to retention failure. That observation is supported by the results of this study which point to
thermocapillary flow arising from condensation as the cause for retention loss. When the liquid is

subcooled, condensation of warm vapor raises surface temperature and establishes a negative

temperature gradient towards the sides of the pore. This gradient yields a thermocapillary stress

that drives flow at the surface towards the wires (i.e., side wails). With a highly wetting fluid, such

as hydrogen, this flow pattern produces a large positive pressure gradient in the wire vicinity. If the

meniscus is at a position corresponding to the nominal bubble point, this pressure distribution is

manifested as a suction in the middle of the surface. Because of the small pore dimensions and
Capillary numbers (Ca ~ 10-3), the surface is highly sensitive to this suction and deforms into the

liquid.

The geometrical limitations imposed by use of quadrilateral finite elements prevented

considering a zero contact angle. Even if one could have accurately modeled such a situation, a zero

contact angle would have been difficult to accommodate with a growing depression in the center of

the pore. This is because the surface on either side of the center-line would have to assume a double

inflection to maintain the bubble point position and satisfy the zero contact angle constraint. If the

meniscus was at the nominal bubble point prior to pressurization, then, at the onset of subcooling,

thermocapillary-induced circulation would cause it to detach and move into the liquid.
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Although a more conservative45° contact angle was used in the investigation, the same
destabilizing effect was observedwith subcooling. Here, the growing depressionincreases the
thermocapillary stress force and half-cavity circulation, which drives the pressuregradient even
higher. As discussedin section VIII, an increasingcurvatureat the center-line has the sameeffect
as decreasingcontact angle, and strengthensthe thermocapillary force in the x2-direction. This is

physically unstable, since the surface calculated after each steady-state solution serves to increase

the deformation-producing effect of dynamic pressure. The author was unable to model complete
expansion of the surface into the liquid because of the limited numerical representation of interfacial

temperature and pressure. However, the point of retention loss probably occurs when the surface
becomes multivalued with respect to Xl. After this point, continued deformation with a constant back

pressure reduces curvature and resistance to further expansion into the liquid.

Although retention loss is attributed to condensation, the recoil mechanism has little effect on

this phenomenon. Because of hydrogen's low ratio between liquid and vapor density (i.e., fp = 50),
the recoil parameter is too low to provide significant contributions to curvature. If it was larger, recoil

could offset pressure-induced deformation and improve retention performance.

2. Superheating with Saturated Vaoor (Case 2). The evaporation caused by superheating

liquid in the presence of pure vapor yields a positive temperature gradient in the direction of the

wires and a flowfield structure opposite to that in case 1. Thermocapillary flow along the surface

establishes a negative pressure gradient towards the side wall, which reduces curvature in the

middle of the cavity. Because of the small recoil contribution, this deflection is primarily attributed to

the pressure increase. The reduction in curvature duplicates the same effect as increasing contact

angle and lowers the thermocapillary stress force. Since this tends to reduce the pressure gradient,

the situation is inherently stable and exhibits no sign of retention loss.

The conclusion that superheating promotes mechanical equilibrium only applies to the surface

and is valid as long as flow through the bottom of the cavity replenishes evaporative losses. In

instances where wicking is unable to accommodate this rate, the surface will be susceptible to

dryout and loss of retention.

3. Subcooling with Inert Gas (Case 3). The situation of subcooling in the presence of an inert

gas occurs when a tank partially filled with gaseous helium is pressurized with warm hydrogen

vapor. As in case 1, condensation takes place but at a rate substantially less due to the increase in
nonequilibrium along the surface. The presence of helium is manifested by a reduction in the

accommodation coefficient e. The most significant aspect of this reduction is a decrease in Biot

number and temperature gradient along the surface. The associated lowering of thermocapillary

stress and circulation results in a lower pressure gradient than case 1 and decrease in deformation.

The presence of helium, therefore, promotes stability and improves retention performance.

4. Superheating with Inert Gas (Case 4). Case 4 models a similar situation in which the tank

is pressurized entirely with heated helium. Here, however, the partial pressure of hydrogen in the

gas is less than the vapor pressure of the liquid and one expects evaporation along the surface. The
effect on accommodation coefficient, however, is very similar to case 3, and causes a lower Biot

number and higher interfacial resistance than its evaporation counterpart in case 2. Provided that

losses at the surface are adequately replenished (i.e., no screen dryout), this situation is also

inherently stable.
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C. Discussion, Summary of Heating and Flow Regimes

Before addressing the problem of retention loss in sections VII and VIII, several different

heating and flow regimes were examined to improve understanding of the relationship between

interracial equilibrium, contact angle and flowfield behavior.

1. Basic State. Analysis of the basic state provided insight into how contact angle, surface

curvature and Biot number Bi infuence interfacial temperature. Thermal characteristics of a static

wetting fluid in microgravity depend on Bi and contact angle o.r--the latter of which dictates the
surface orientation with respect to the temperature gradient. Although convection is ignored in the

basic state, the author was able to characterize the fundamental influence of Bi and r9 on heat

transfer, mass transfer and stress by using the thermal potential 11, modified stress 0i and Re-

normalized thermocapillary stress force BiOi. These parameters were derived by factoring out the

linear effects of Re (or Ma) and Bi, and restricting our focus to the nonlinear influence of o) and Bi.

Applying the definition of 0i, it was found that low-contact angle surfaces exhibit lower

surface temperature gradients and stress distributions than flatter ones. Because the surface is

closer and more parallel to the side wall in the contact region, the change in temperature with respect
to the surface contour is less.

Integration of the modified stress distribution provided an indication of the total stress force

acting in each direction Oi. The product of Bi and Oi reflected the sensitivity of surface traction to Bi

and co. With a wetting surface, it was found that a net thermocapillary force arises in the +x2-

direction with subcooling and -x2-direction with superheating. No net force occurs in the xl-direction

due to the mirror-symmetry of 01 about the center-line. Because of the steeper surface orientation

near the contact line, the magnitude of the thermocapillary force is greater for smaller contact angles.

Applying the definition of thermal potential I1, it was found that heat and mass transfer

should increase at higher Bi and lower co. Although the nonlinear effects of Bi tend to decrease FI by

reducing interfacial temperature, the linear influence of Bi offsets this and increases interfacial
transport. Also, the lowering of contact angle tends to raise 11 due to the increase in exposed area

near the side wall and along the meniscus in general.

2. Pure Evaporation and Condensation. Evaporation occurs when the boundaries are

superheated with respect to the vapor, while condensation arises when they are subcooled.

Evaporation establishes a vertically oriented flowfield in the +x2-direction which produces

counterclockwise and clockwise circulation in the left and right half-cavities, respectively.

Condensation produces a similar flow structure that is opposite in direction and sign. In both cases,

there is a small contribution of surface velocity to circulation (i.e., side wall bias) due to the
concentration of mass flux at the side walls.

Depending on the level of vapor/liquid equilibrium, this vertically oriented flowfield can
strongly influence the interfacial temperature distribution via convection and complicate the

calculation of heat and mass transfer through the cavity. Evaporation convects superheated liquid to

the surface which tends to raise surface temperature. Condensation causes the accumulation of

warm liquid on the surface which also increases surface temperature. The temperature increase

associated with evaporation, however, serves to raise thermal potential and interfacial transport,

while with condensation, the potential is lowered, thus suppressing heat and mass transfer. The

deviation in thermal potential from the basic state is maximized when 1 < Bi < 10.
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Evaporation and.condensationalso exhibit different effects on the surface temperature
gradient. The increasein surface temperaturethat accompaniescondensationserves to raise the
averagegradient and extend the variation over a larger portion of the cavity. With evaporation,
however, the elevated surface temperature decreases the gradient and shifts most of the
temperaturechangeto the side walls. Although the shift in gradientcausedby convectionhas little
influence on pure evaporationor condensation,it doesaffect thermocapillarystresswith combined-
modeconvection.

At the samelevels of surfaceequilibrium and superheat/subcooling,the magnitudeof half-
cavity circulation for evaporationis typically greaterthan that for condensation.This is becausefor
Bi < 102, the primary contribution to circulation comes from the velocity along the center-line. The

center-line velocities are greater for evaporation because of its reinforcing effect on thermal potential
and mass transfer.

3. Pure Thermocapillary Flow. Thermocapillary-induced stress establishes two counter-

rotating cells symmetric about the cavity center-line. With superheating, the circulation in the left

half-cavity is clockwise, and warm liquid at the surface is convected from the side walls to the

center-line. With subcooling the circulation is reversed, and surface fluid flows towards the side

walls. Surface velocity and circulation strength depend on Ma and the variation of temperature

gradient along the meniscus, which is primarily dictated by Bi. Note that the thermocapillary and
interfacial circulations concomitant with either superheating or subcooling are opposite in sign.

The surface convection associated with superheating tends to increase interfacial

temperature and thermal potential. Fluid in the upper portion of the cell enters the surface region

near the maximum cavity temperature and flows to a cooler region. Hence, the temperature is
minimum in the center of the cavity. With subcooling, the situation is more complex. Competing with

the accumulation of warm liquid at the meniscus center is the return flow of cool liquid from the

bottom of the cavity. This upwelling suppresses the temperature rise in the center-line region, and

causes the temperature profile to exhibit a maximum between the center-line and side wall. It also

offsets the convection of warm liquid towards the side walls and yields a more modest increase in

thermal potential compared to superheating.

The half-cavity circulation for superheating is consistently greater than that for subcooling. At
low Ma, the difference between the two is maximized at Bi ~10, but disappears as Bi --_ 0 or Bi

*,,. At high Ma, the effect of convection on the superheated temperature field is more extensive and

forms a high gradient region around the center-line. There is consequently a significant difference

between these two modes over the entire range of Bi.

Thermocapillary flow yields substantial pressure gradients near the side walls. With

superheating, the gradient is negative because the flow towards the center-line produces a suction

in the contact region. With subcooling, the flow towards the side wall produces a suction at the

center-line and a pressure rise at the comers. At low Ma, the pressure rise for subcooling is larger,

since the differences in circulation are rather small, and the magnitude of thermocapillary stress for

subcooling is greater at the corners. At higher Ma, the substantially higher circulation for

superheating yields a larger change in pressure along the surface.

The circulation and pressure variation associated with thermocapillary flow strongly depend

on contact angle. With large contact angles (09 _ 90°), the circulation in each half-cavity is

suppressed by opposing flow from the other side. At lower contact angles, the circulation for both
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heatingmodesis more intense.It wasalso found that the circulation intensity is directly relatedto
the x2-component of the net thermocapillary stress force exerted on the surface. The strong

dependence of circulation on contact angle also applies to the behavior of dynamic pressure. At high

angles, the pressure distribution is somewhat constant, which reflects the reduced constriction on

flow area at the interline. At low angles, however, the pressure gradient at the side walls is
substantially greater.

4. Combined-Mode Convection. In general, the behavior of pure thermocapillary and
interfacial flow still applies in the combined situation, even when one mode clearly dominates over

the other. There are, however, several unique features of this type of regime. For one, the

circulations associated with thermocapillary and interfacial flow oppose each other. Thus, when both

modes are present, the total half-cavity circulation C is a good indicator of which mode governs the

convection pattern and temperature distribution. Although the circulations are opposite in sign, their
simultaneous presence may actually reinforce the effects of both modes. For instance, with

subcooling in the transition region (C _ 0) thermocapillarity tends to augment the suppression of

thermal potential caused by condensation. By distending the warm temperature region towards the

side wall, the thermal potential decreases to a value lower than that for pure condensation.

The pressure gradient for combined flow is also greater than either its pure thermocapillary or

interfacial flow counterpart. This is because combined flow reflects a superposition of the pressure
distributions for thermocapillary and interfacial flow.

5. Surface Response and Morphology. The thermal dependence of surface tension appears to

have little effect on surface curvature and steady-state morphology. The first-order analysis in

section VII showed that this term would be significant only if the Crispation number Cr were close to
1. This is physically unrealistic, since Cr is usually less than 10 -1.

The surface is most sensitive to viscous stress in instances where there is strong

thermocapillary flow along a highly curved meniscus. The curvature term in the expression for
viscous stress appears to exhibit a much stronger sensitivity than the flux component, especially at
small contact angles. However, compared to the other terms in the normal stress balance, viscous

stress can be safely ignored for the problem considered here.

For the length and temperature scales considered in this problem, the two most important

terms in the normal stress equation are vapor recoil and dynamic pressure. The surface deformation

associated with recoil is the same for both superheating and subcooling and causes a flattening and,

under extreme conditions, a bulging in the center of the pore. It appears, however, that this

deformation is stable in that the response does not result in an increase in the temperature
distribution across the meniscus. In fact, its effect is analogous to increasing the contact angle.

The influence of dynamic pressure represents the only potential instability. With

superheating, this term has the same effect as recoil and tends to flatten the meniscus. It duplicates

the same effect as increasing contact angle and serves to reduce the magnitude of pressure gradient
at the side walls. The deformation in this case is stable. With subcooling, however, the deformation

is reversed and causes a depression about the center-line. This promotes circulation and tends to

increase the magnitude of the pressure gradient and the deformation even further. The effect of

pressure in this case is analogous to decreasing contact angle. It appears that pressure-induced

deformation primarily depends on the circulation caused by thermocapillary stress and becomes more
pronounced by increasing either Ma or Bi.
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D. Conclusions

The results of this study support the original hypothesis of retention loss being caused by

convection within the screen pores of liquid acquisition devices. The retention failures encountered in

previous experiments with liquid hydrogen and pressurized heated hydrogen vapor are caused by the

thermocapillary flow arising from condensation-induced temperature gradients along the liquid

surface of each pore. This flow establishes an interfacial pressure variation that deforms the center of
the surface into the liquid. The situation is physically unstable at zero to low contact angles, since

the deformation serves to increase the net thermocapillary stress force and pressure gradient even

further. The end result of the deformation is an expansion of the meniscus into the liquid and eventual

detachment from the screen wires.

The resistance to retention loss observed with heated helium pressurant is due to the change

in direction of heat and mass transfer at the surface. In this case, the surface evaporates and

establishes a thermocapillary flow structure that is opposite to the case of hydrogen pressurization.

Instead of depressing the meniscus, the pressure gradient tends to raise the surface in the center of

the pore. This situation is inherently stable because deformation in this direction serves to reduce

the thermocapillary stress force, circulation and interfacial pressure gradient. As long as the wicking

rate of the screen can accommodate evaporative losses, pressurization with heated helium promotes

mechanical equilibrium and mitigates retention loss.

The immunity to retention loss encountered with direct heating of screen samples is due to
the same behavior associated with helium pressurization. Since the vapor surrounding the screen is

not pressurized relative to the liquid, the pore menisci are superheated relative to the vapor. The

same thermocapillary flow pattern encountered with helium pressurization develops, and, provided

the wicking rate is adequate, the screen exhibits nominal or improved retention characteristics.

E. Recommendations

1. _iquid Acquisition Device Applications. From a spacecraft design standpoint, this study
has furthered understanding of a second retention failure mode for screened LAD's. The first, which

has been recognized for years, is the dryout caused by evaporation and inadequate wicking through

the screen structure. This problem, however, is correctable with proper design of the liquid and

screen system. Most importantly, the failure is not attributable to a liquid surface effect, since, as

this study showed, evaporation tends to promote surface stability and does not detract from
meniscus retention behavior.

The failure mode investigated in this study is completely different than screen dryout. It is

caused by the presence of a physically unstable flow pattern in the pores of the screen and occurs

only when heated vapor is used as the pressurization source. This retention loss mechanism would

present problems only in cases of autogenous pressurization.

The results of this study suggest that an autogenous system is incompatible for use with

liquid hydrogen. Thus, the most straightforward recommendation is to discourage use of such a

system. This study has confirmed that the traditional approach of using an independent pressurant
source, such as helium, has little impact on retention performance. However, autogenous

pressurization is a recent concept that represents an advancement over helium pressurization, and is

appealing due to its potential reduction in weight and complexity.
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Basedon the resultsof this study, it appearsthat loss of retention in an autogenoussystem
could be mitigated by either (1) reducing the accommodationcoefficient and interfacial thermal
gradientsin the pore menisci, (2) reducingthe level of subcoolingbetweenthe vapor pressurantand
liquid neartheLAD surface,or (3) eliminating theporeliquid surfaceandthermocapillaryconvection
altogetherduring periodsof pressurization.

There are severalways of reducing accommodation coefficient. One that is complementary

with some current pressurization schemes is to inject and mix a small amount of helium with the

hydrogen vapor. The presence of helium reduces the accommodation coefficient and increases non-

equilibrium at the surface. This suppresses condensation, reduces the interfacial temperature

gradient, and ultimately reduces thermocapillary flow and the flow-induced pressure gradient

responsible for retention loss.

Another method, which is appealing for start basket applications, is to employ helium only

during the initial phases of pressurization. Retention loss usually occurs prior to engine restart when

the outside screen surface is exposed to vapor. During this period, a small independent supply of

helium is used to ensure engine restart. Once the liquid reorients and fills the basket, the

autogenous supply is applied for the duration of the maneuver. The amount of helium required is

much less than a totally independent system. However, if the mass diffusion rate of helium in

hydrogen is much less than thermal diffusion in the tank, then this concept incurs the same retention

difficulties as an autogenous system.

Another alternative for reducing accommodation coefficient is to add a foreign substance to

the hydrogen liquid itself. Seeding of hydrogen has been considered before for other applications,

such as magnetic control. However, the issue always arises on how the substance will impact

propellant properties and rocket engine performance.

A second method for correcting retention failure is to offset subcooling by heating the pore

directly. This approach may be viable if the heat could be applied uniformly across the screen surface.

However, the complex geometry of the screen and inefficiencies associated with conduction along

such a tortuous path requires application of a relatively large heat load at only a few locations. Not

only would the level of heating and offset to subcooling vary considerably along the screen surface,

but in the vicinity of heat application, the liquid could become highly superheated and susceptible to

retention loss via evaporation and dryout.

The third method of mitigating retention loss is to devise a way of eliminating the porous

surface entirely. Recall that the problem arose from condensation-induced thermocapillary convection

on the liquid surfaces of individual pores. If, on the other hand, condensation occurred along not only
the liquid surfaces but also the screen wires, then this convection mode would be altered and the

adverse pressure gradients caused by flow in the contact region would be eliminated. Key to this

approach is the establishment of a liquid layer prior to development of a thermocapillary flowfield.

This concept holds promise since the subcooling could be provided relatively easily by the Joule-

Thompson effect in a thermodynamic vent system.

2. Future Research. In addition to recommendations pertaining to the design of LAD's and

autogenous pressurization systems, several suggestions are offered for future research and

investigations in this area. Most of these are in response to issues raised in this study and include:
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a. The problemdomainconsideredherewasvery simpleand did not realistically portray the
situation near an LAD screen wire. Future investigations could concentrate on more complex
geometries,suchas the type in figure 3, or evenproblemsinvolving solutionof a three-dimensional
flowfield. This would moreaccuratelyreflect thesituation in a liquid acquisitiondevice,heatpipe, or
other porous engineeringsystems.

b. The isothermalboundaryconditionsfor the solid andinternal interface did not reflect the
wider rangeof operating conditionsencounteredin actual applications.Future investigationscould
examinethe effect of usinga Neumann-typeheatflux conditionat the sidewall and possiblya liquid
in a saturatedstatecoming from theinterior. This wouldmoreproperlymodelthe situationof applied
heatingat the interface.

c. The analysis of surface deformation and stability was rather limited in terms of
sophistication and breadth. The purposehere was merely to identify probable retention failure
mechanisms.Characterizing the nature and details of this behavior, particularly the destabilizing
effect of dynamic pressure,shouldbe investigatedusing moresophisticatedstability analyses.

d. Contact angleappearsto play a major role in thermocapillarycirculation and shouldbe
examinedmore thoroughly.

F. Summary

In this section, the findings and results have been summarized in a manner that relates to

both LAD retention and two-phase microgravity fluid convection. The conclusions have been

presented which provide a plausible explanation for the disparity in liquid hydrogen retention
observed with different pressurant and heating conditions. To make the results more relevant from

an engineering standpoint, several recommendations have been offered for mitigating and eliminating
this form of retention loss in autogenous pressurization systems. Although all of these have

potential drawbacks, it is important that condensation-induced retention loss be recognized as an

additional consideration in the design of LAD's and spacecraft propellant systems.
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APPENDIX A

DOMAIN ELEMENT INTERPOLATION FUNCTIONS

A. Introduction

Several different types of interpolation functions _N are used to approximate the variation of

velocity, pressure, and temperature on the element level. The form of these functions are
distinguished by their order of variance with respect to the element naturalized coordinates _1 and _2

(or _ and r/, respectively). A diagram illustrating the relationship between a representative

quadrilateral element and the local coordinate frame is shown in figure A-1.

I

II

_k.b"

_1 or

II

Figure A-1. Naturalized coordinate frame.

The index N of the base function cI)N refers to the local node at which the function applies. The

derivation of expressions for _)N is based on the nodal positions designated in figure 6. These

designations for node positions are used consistently throughout appendix A.

As was discussed in section IV, the simplest elements employ the same order of variance in

both the _l and _2 directions (i.e., types 1, 3, and 5). This form is used for all the interior elements

shown in figure 6, and consists of first-, second-, and fourth-order polynomials expressed in terms of

_l and _z. The other type of elements employ different interpolation orders in each direction (i.e.,

types 2 and 5). Along the meniscus, pressure is modeled by a first-order interpolation in the _l-

direction and a second-order in the _2-direction, while temperature is approximated as a second-

order in the 41-direction and fourth-order in the _2-direction. For elements adjacent to the sidewall,

the higher order variation is applied in the _l-direction. The following chapter outlines derivation of

expressions for _N, and its associated first and second-order gradients with respect to the global

coordinate frame xi.

B. Lagrange Polynomials

The two-dimensional base functions _N are derived by taking the product of the one-

dimensional Lagrange polynomials corresponding to each direction. Each polynomial characterizes

the variance in either the _1 or _2-direction at each element node. All of the interpolation functions
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used in this study are based on and require the definition of first-, second-, and fourth-order
Lagrangepolynomialequations.Theseareobtainedfrom thegeneralform:

L(i)_ = _ _ i-_ mi (A- 1)
ra=llm_N _ Ni--_ mi

n represents the order of the approximation, while n+l represents the total number of nodes

required in the _i direction. _Ni is the position of node N in terms of naturalized coordinates. For a

linear variance between two endpoints, n is set equal to 1 and the products are calculated from m =1

to m = 2. This yields the two Lagrange interpolation functions:

L(i)_ =_li-_2iJ-(_-i-_-]-(_)=-l (_i-1) (A-2)

For a second-order variance, n = 2, and one obtains polynomial expressions at three nodes:

= _¢ ,i-¢ 2i) _ _ _ -_J = _'--i'S'_-01k---i'Z-l-l l = 1 _ i(_ i-1), (A-3)

L(i)_':(_-i-_](_i-'3i) (_/-_) (___) :1-_ _

L(i,_'=[ _i-_li_[._i-_-(_i+l)(_i -1) 1__ 3,-_ ,,1_ 3,-_ _J- 2 1 = ,(_,-1)

Third-order interpolations were considered early in the study but were not included in the

final version of the model. In any event, the Lagrange polynomials associated with a third-order

variation are obtained in a similar manner by setting n = 3.

L(i)_H = -9 (¢ _-1/9)(¢ i-1), (A-4)

L(i)_u= 27 (_-1)(_ 1/3)
T'6 i-- ,

L(i)_tl= -T-627(42i_ 1) (_ i+ 1/3)

L(i)t4I,= 9 (¢ 2i_1/9)(_ i+ 1).

For a fourth-order variation, n = 4 and one must consider polynomials evaluated at the origin,

two endpoints, and two intermediate locations for a total of five nodes.
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L(i)_'= -_ 4 i(4 i+ 1/2)(4 i-1/2)(4 i-1) ,

L(i)_ "=-8 4 i(4 ,-1/2)(4 ,+ 1)(4 i-1) ,

L(i)_ v = 4( 4 ,+1/2) (_ i- 1/2) (4 i+l) (_ i-1) ,

L(i)_' = - 8 4 i(4 i+ 1/2) (4 i+ 1) (4 i- 1) ,

L(i)r_= 2 _ ,(_ i+ 1/2)(_ i-1/2)(x i+ 1) .

(A-5)

C. Interpolation Functions

1. Function Type 1

The two-dimensional interpolation functions with equivalent orders of approximation in the _1

(or _) and _2 (or 77) directions are constructed by taking the product of the Lagrange polynomials

corresponding to each local node's _1 and 42 coordinates.

(I)_/ -- vI nL(1) _qv)L(2) ,7(N) • (A-6)

N signifies the element node number, while _(N) and ri(N) are its associated naturalized

coordinates. For linear interpolations, the local interpolation function that applies over the two-

dimensional element domain is obtained by multiplying the 41 and _2 Lagrange functions for each
local node.

o_t= L(1)_tL(2)_t = 1 x l_ 2(_ ,+1)(-4 2+1),

*_= L(1)_L(2)_ = ¼ (4 ,+1)(-4 2+1) ,

(_ I t 1= L(1)2L(2)2 = _. (_ 1+1)(4 2+1) ,

O_= L(1)_L(2)t2 = 1 (-4 ,+1)(4 2+1)-

These expressions can be written as a single general equation by applying the coordinate

values at the node under consideration, that is _N1 and _N2. This approach is appealing because the

node values are independent of _i. The general expression for ON I is:

_v = k (_ m4 ,+1)(4 ,v24 2+1) • (h-7)
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2. Function Type 3

The same approach is applied in deriving expressions for the quadratic interpolation functions.
Here one must consider three nodes in each direction and a total of nine interpolation functions. For

the comer nodes (N = 1, 3, 5, and 7), one has:

._i n n 1= L(1)IL(2)_ = _- _ 1_ 2(_ rl)(_ 2-1) ,

._t L(1 n tt 1= )3L(2)1 =7 _1_ 2(¢1+1)(¢2-1) ,

.ts, = L(1)_tL(2)n= 1 ¢ 1¢ 2(_ 1+1)(¢ 2+1),

II H II
*7 = L(1)lL(2)3 = 1 ¢ 1¢ 2(¢ 1+1)(_ 2+1) '

which can be expressed more generally as:

On = 1 _ Jvl_ _v2_ l_ 2(¢ lvl_ l+l)(_ 1v2¢2+1) • N= 1, 3, 5, and 7 (A-8a)

For the midside nodes (i.e., noncenter axes nodes) one obtains:

.t2t : L(1)_,L(2)_t = 1 ¢ 2(_ 2-1)(1-_ _),

.g= " a 1+1)(1__ 2)L(1)3L(2)2 = ½ _ 1(¢

.161 = L(1)t21L(2)_,= 1 _ 2(¢ 2+1)(1-¢ _),

._t tt n 1= L(1)l L(2)2 = _ _ |(¢ 1-1)(1-_ _),

which in general terms become:

*_ = ½ ¢ N2_ 2(¢ N2¢ 2+I)(I-¢ _)'

*_ -" ½ ¢ NI_ I(¢ NI¢ I+I)(I--_ 2) .

Finally, for the center node one obtains:

._t = L(1)t2tL(2)t2t = (1-¢ _)(I-¢ _).

N = 2 and 6 (A-8b)

N=4 and 8

N = 9 (A-8c)
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3. Function Type 5

Derivation of the fourth-order interpolation function is also based on equation (A-6), but
requires considerably more algebra. The following condensed form is obtained for the local nodes

lying on the outside comers, the outside edge off the coordinate axes and the inside comers of the

25-node element shown in figure 6:

where:

• _= C[_ ,(¢ ,+_ _v,)(4_ _,_ _-1)] [¢ 2(¢ 2+_ m)(4_ _v2_22-1)] ,

C = 1/36 , N= 1, 3, 7, and9

(A-9a)

C = -8/18 , N=2, 4, 6, 8, 10, 12, 14, and 16

C = 64/9 . N = 17, 19, 21, and 23

For the center node (N = 25) one has:

*_= 16[(¢ _-1)(¢ _-1/4)] [(¢ _-1)(¢ _-1/4)] .

All remaining nodes can be expressed in the general form:

_ = C[(_ _- 1)(_ _- 1/4)][_/_(_/_+¢ N#)(4¢ _#¢ _r- 1)],

where:

C= 4/6, a= 1 andfl=2 ,

C=4/6, a=2andfl=l ,

C = -32/3, tx = 1 and fl = 2 ,

C = -32/3, a = 2 and fl = 1 .

(A-9b)

N = 3 and 11

N = 7 and 15

N = 18 and 22

N = 20 and 24

(A-9c)

4. Function Type 2

The general expression for the mixed ordered functions is very similar to equation (A-6). The
only difference is that it is comprised of Lagrange polynomials of different order at each local node.
The general formula is:

= L(1) _mL(2) o_t¢), (A- 10)

where n and m correspond to the orders applied in the _- and 0-directions, respectively. The

combination of first and second order interpolations are needed to maintain consistency between the

number of equations and nodes. There are two types of functions which are applied at the meniscus
and sidewall, namely:
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,I,_-"= L( I II1) _0v)L(2) O(N) ,

O_-1= L( "1) _0v)L(2),7(N) •

For the function adjacent to the meniscus, ON/-H, the following general equation applies:

Or-it _ 1
N -4 _2(_Z+_m)(_Nl_l+l) ' N= 1,2,4, and5

._v-tt = ½ (1-_ _)(_ N,_ 1+1) . N=3and6

For the sidewall function, ON llt, one has:

.

(A-1 l)

_ II-I -- 1
N -- 4 _ 1(_ l+_ NI)(_ N2_ 2+1) , N = 1, 3, 4, and 6 (A- 12)

O II-I -- 1
:¢ - 2 (1-_ _)(_ t¢2_ 2+1) • N = 2 and 5

FunctionType 4

One applies the same approach with the combined second and fourth-order elements by again

considering two types of interpolation functions:

on-r¢ _ 11 tv
o - L(1)_(mL(2) nov) ,

= L(1)_{N)L(2),70v) •

The general forms of these two are the same as in equations (A-11) and (A-12). For the
meniscus function, ON II-Iv one has the following different forms of interpolation:

mH_m_ C(4_ _2¢ __1)(¢ 2 2"-'u - 2+__2_2)(__+_.l_,)

O_-tv = 2(_ _-1)(_ _-1/4)(_ _+_ NI_ l) ,

adz-iv C(4_ _2_ 2 2"*'N = 2-1)(_ 2+_ N2_ 2)(1-4 21) '

OH-re 4(¢ _-1)(¢ _-1/4)(1-¢ _)N --

For the sidewall function, ON Nfl, one has:

_1_-II = 2 2 2c(4_N_ _-I)(__+_N_ 0(__+__2_2),

N = 1, 3, 7, and 9: C = 1/12

N = 12, 4, 6, and 10: C = 8/6

N= 5 and 11

N= 2 and 8: C= 1/6

N = 13 and 15: C = 8/3

N= 14

N= 1, 5, 7, and 11: C= 1/12

N= 2, 4, 8, and 10: C= 8/6

(A-13a)

(A-13b)

(A- 13c)

(A-13d)

(A-14a)
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ONto-n=2(¢_--1)(_2--1/4)(__+_NZ_ 2) ,

(i) N_-//= 2 2 2c(4_ N,_ _-1)(_ _+_N_ 0(1-_ _),

_-u = 4(_ _-1)(¢ _-1/4)(1-_ _) .

N=3and9

N = 6 and 12: C = 1/6

N = 13 and 15: C = 8/3

N= 14

(A-14b)

(A- 14c)

(A-14d)

D. First-Order Gradients

1. General Form

To derive an expression for the gradient of iX)N with respect to xi (i.e., OdPN/OXi), one

recognizes that the interpolation function is expressed as a function of local or naturalized

coordinates, • N = dPN(_k), which, in turn, are functions of the global domain, _k = _k(Xi) • The

gradient of CI)N with respect to natural coordinates, therefore, is related to the global domain by

means of the Jacobian, J1¢i, where:

and

a{k = Jk," OXi , (A- 15)

[Ox,Ox ]
Ox, io , a¢,I

J_: a-_k:/aXL ax2_/ •
[a_2 a_2J

It is also recognized that xi can be expressed as a function of _l by employing an alternative

transformation based on J'il, namely:

_I_N ' 3¢I_s (A- 16)
aXe =J" a¢ t

Substituting equation (A-16) into equation (A-15) yields the identity JkiJ'il = _Skl, which implies that

J'il is equivalent to the inverse of the Jacobian matrix, i.e., J'il = (Jil) -1. This inverse is used to

express the global gradient in terms of a locally based derivative:

_¢I)N _1) N

An expression for the inverse is derived as follows:

(Jik)-l= OX'--_t IJI '

(A-17)
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I -
I

_X 2 _X 2 _X 1 _ _ _X 1

e lae ip _)xp (A- 18)
(Jik)-l= IJI _t

The determinant of the Jacobian IJI is expressed as:

The first task is to obtain an expression for 8xp/O_z that can be substituted into equation

(A-18). Regardless of the flow variable considered or its order of interpolation, the element
boundaries are assumed curved to enable closer approximation of actual meniscus curvature. A

Second-order curvature is assumed which means that xv can be expressed in terms of a quadratic

interpolation with respect to the naturalized coordinates:

x, = _xt¢ p = _tx,e+. . . +O_tX9p • (A-20)

The terms in equation (A-20) can be expanded using the second-order interpolation formulas

given in equation (A-8) to yield:

---- (_ 1_ 2--_ 2_ 2--_ 1_ @4"_ 1_ 2) XlpO_,x,t, ¼ 2 2 , (A-21)

ty_lX3p = 1 (_ _ ___ _ 2+ _ 1_ _--_ 1_ 2)X3, ,

t_.)llx4 p = 1 (__ _ ___ 1_ 22+_ 21+_ 1)X4p,

._IX5p= 1 (_ _ _+_ 21_ 2+ _ 1_ 2__ 1_ 2)X5p ,

½ - 2¢2 2---- 2--_ 1_ 2+_ 2+_ 2) Xep "

a'_"xT_= ¼¢_2,_22+__1_2-_ ,_ _-_,_ 2)x7_,

ty_lX8p_, l (__ _ 2+_ 1_ _+_ _--_ 1)X8p ,

t_191X9 p = (_ 12_ 224 2 _ _+ 1) x9v.
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A generalized expression for xp is obtained by rearranging the terms according to like

products:

where

xp=l[ap+bp_ l+Cp_2+dp_l_2+ee_ )
(A-22)

ap = 4X9p ,

bp = 2Xap-2Xsp ,

Cp =-2X2p+2X6p ,

dp = xlp--X3p-I-X5p-X7p ,

e p -" 2X 4p+2X 8p--4X 9p ,

fp : 2X 2p+ 2X 6p--4X 9p ,

gp = -x lp+X3p-2X4p+Xsp--x7p+2xsp ,

h p = -x lp+2X 2p-X3p+X5p-2X6p+X7p ,

pp = x lp-2x 2p+X3p-2X 4p+X5p--2X 6p+X7p-2X 8p+4X9p .

Differentiating the expression for Xp in equation (A-22) by _l yields the following expression

for the position derivative:

where

Substitution

expressions for the inverse and determinant of the Jacobian matrix:

3x___.e_e1

= "_ Apt ,

2
Apl = bp+dp_ 2+2ep_ l +gp_ _+2hp_ 1_ 2+2pp_ l_ 2 ,

Ap2 = cp+dp_ l+2fe _ 2+2gp_ 2_ 2+hp_ 21+2pp_ 21_2 •

of equation (A-23) into equations (A-18) and (A-19)

(Jik)- 1 e_eu
= _ Apl ,

IJI = "_6 (AllA22-A21A12) "

(A-23)

yields complete

(A-24)

(A-25)
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2. Function Type 1

The next step is to calculate the derivative of the test function with respect to the naturalized
coordinates. For the linear function, the general expression in equation (A-7) is expanded to yield:

(I)/ "- ¼ (_ NI_ N2_ 1_ 2+_ NI¢_ 1+_ N2_ 2+1) " (A-26)

The corresponding partial derivative is:

= 1 (_ Nk+_ NI_ _'2(_1_2t+_26 lk)) • (A-27)
k

The global derivative OONl/Oxi is obtained by combining equations (A-24) and (A-27) to yield:

I
_I) N _ _ ip

- 161J----T[-(_ iv2+_ l_ NI_ lv2)Apl+(_ Nl+_ 2_ _vl_ N2)Ap2] • (A-28)

3. Function Type 3

The gradient of the quadratic function is best solved by considering the corner, midside, and

center nodes separately. For the corner nodes, the expression for _N It in equation (A-8a) is split

into three terms:

_ = CNEIE2E3 ' (A-29)

where

CN= 1 _ Nl__2 ,

el =_1_2 ,

E2 = _ NI_ 1+1 ,

E3 = _ N2_ 2+1

The general form of the derivative is then:

°ou = C N(E I,iE2E3+E1E2 iE3+E IE2E3 i) (A-3 0)N,i , , '

where

0El

El, i = (Jik)-l _ = (Jik)-l(_ 18t2+_ 23kl) ,

0E2

E2,i = (Jik) -1 _ = (Jik)-l _ lVl_ kl ,

OE3

E3_= (Jik)-1_ = (s'ik)-l_N2_k2 •
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Furtherrearrangingof the E-terms in equation (A-30) yields:

tYPIC,i = CN(Jik)-I(cl¢_ lk-I-C2_2k) , N = 1, 3, 5, and 7
where

CN=I _Nl_N2 ,

C1 = _ 2(_ N2_ z+l)(2_ t¢1_ 1+1) ,

C2 = _ 1(_,v1_ 1+1)(2_ t¢2_ z+1) •

For the midside nodes, equation (A-8b) is expressed in the following general form:

O_= -_ (1-_ _)(¢ sue _+¢ a). (A-32)

For N = 2 or 6, o_ = 2 and fl = 1. IfN = 4 or 8, a = 1 and fl = 2. The local derivative of equation
(A-32) becomes:

= 0(_ t¢_ _+_ t¢a_ uk] (A-_--__- --_ [-2_ ,_)3ak+(1-_ _)(2_ ,_+1)_5 . 33)

When substituted into equation (A-17), the following general expression is obtained.

where

o_,i = C_(JD-1[CaS ak+C_ =k) ,

_Na

CN = T '

N= 2 and 6; a= 2 and fl= 1

N=4and 8; a= 1 and fl= 2

C a =-2¢ a(_ t¢.¢ _+_ 6) ,

C.= (1-_)(2_ t¢u_ _+1) .

For the center node, one differentiates equation (A-8c) by _k to obtain the local derivative:

_I)_ =-2[_ ,(1-_ _)¢_ ,k+_ 2(1-_ _)_ 2k]
_)_k

Substituting equation (A-34) into equation (A-19) yields:

OlN.i = -2(Jik)-l[c1 ¢_ lk +C2 _ 2k] ' N = 9
where

c, = _,(1-4 _),

c2=_:(1-_).

(A-31a)

(A-31b)

(A-34)

(A-31c)
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4. _nction Ty_ 5

Derivation of the gradient of the fourth-order interpolation function requires lengthy algebraic

manipulation. To summarize, one expresses it in general terms:

1_ IV _ CN (Jik)-l (C 18 lk + C2 _ 2t) ( A- 35 a)N,i--

For the off-axes nodes, one has:

C N=1/36 , N=l, 5,9, and 13

Clv =-8/18 , N= 2, 4, 6, 8, 10, 12, 14, and 16

C,v = 1/36 , N = 17, 19, 21, and 23

C1 (16_1_ 3 3 2= ,+ 12_ N,_ ,-2_ ,-_ N,)(4_ _t2_ 4+4_ _v2__-_ _-_ N2_ 2) ,

u2_ 2+ 12_ N2_ 2-2_ 2-_ N2)(4_ 2_ _+4_ _¢1__-_ 2__ _v_ ,) •C2 =(16_2 3 3 2

For the center node (N = 25), one has:

Cu= 16 ,

C, =(4_-5 _,)(,__5 _+1),

C2 :(4_- 5 _ 2)(_ 4-5 _ _ + 1) •

For the remaining nodes, one uses the general expression:

t_IV CN(Jik) -1 (Cct8 at+Cfl g ilk)N,i =

and the coefficients

Cu = 2/3 ,

CN = -32/3 ,

Cu = 2/3 ,

C N = -32/3 ,

a=l/fl=2 ,

a=l/fl =2 ,

a=21fl = l ,

a=2/ fl = l ,

N= 25

N= 3 and 11

N = 18 and 22

N= 7 and 15

N = 20 and 24

=Ca (4_3a-5_a)(4_2¢_+4_ 31v,_3 2

4 3 2 2
C,o=(_ a- 5 _ 2+1)(16 _ 2/_ _+ 12_ N/_ #-2_/_-_ N/_).

(A-35b)
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5. Function Type 2

For the type 2 functions, one still employs the general relationship in equations (A-31a) and

(A-35a). For the meniscus elements, type 2a, one has:

CN = 1/2 ,

=

C 2 =-2_ 2(_ Nl _ 1 +l) '

CN= 1/4 ,

=

C 2 = (2_ 2+_ ,v2) (_/Vl _ l + 1) .

For the sidewall elements, type 2b, one has:

CN = 1/2 ,

C 1 = -2_ x(_ NZ'_ Z+1) ,

Cz = _ _v2(1-_ 2) ,

C N = 1/4 ,

C l = (2_ l+_ Ol)(_ N2_ 2 + 1) ,

C2 = _ N2(_ 12q-_ NI_ 1) "

6. Function Type 4

N=3and6

N= 1, 2,4, and 5

N=2and5

N= 1, 3, 4, and 6

Again, one uses the general expression for the derivative in equations (A-31a) and (A-35a),
and calculates the coefficients for the combined second-fourth order functions. For the meniscus

C N = 1/2 ,

C_v = -8/6 ,

N= 1, 3,7, and 9

N=4, 6, 10, and 12

elements and the off-axes nodes, one has:

2 4 3 3
C 1 = (4_ N2_ 2+4_ ,V2_ 2--_ _-_ N2_ 2) (2_ 1+_ m) ,

2 3 3 2C2 (16_N2_2+12_m_2--2_2--_N2)(_+_m_l) •
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For the noncenternodeslying on the _2-axis:

Cjv= 1/6 , N= 2 and 8

C jr = -8/3 , N = 13 and 15

C 1 -2_1(4_ 2 _+4_ 3 22-¢2-¢ 2) ,

C 2 = (16_ 22_ _+ 12_ _2_ 22-2_ 2-_ N2)(1--_ 2) .

For the noncenter nodes lying on the _l-axis:

Clv=2 , N= 5 and 11

2- ¢2+ (2¢1+¢N0,

1>.
For the center node, one has:

Ct¢=4 , N= 14

C2 =(4_ 3 5

The expressions for the sidewall elements are very similar but are based on a different

relationship between the local nodes and naturalized coordinate frame. For the off-axes nodes, one
has:

C N- 1/12 , N= 1, 5, 7, and 11

C:¢ = -8/6 , N = 2, 4, 8, and 10

C 1 = (16_ _1_ 31+12_ 31_ _-2_ 1-_ m) (_ 22+'1:-N2ca 2 _'_ )

C2 (4_ _1_4+4_ _1_ 3 2= l-_ ,-_ m_ 1) (2_ 2+_ _2) •

For the noncenter nodes lying on the _l-axis:

CN =1/6 , N=6and 12

C N--8/3 , N=13and 15

C! =(16_2 3 3 2 2)N1_ 1+ 12_r NI_ 1-2_r 2__ m)(1-_ 2 ,
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Cl -2_ 2 4 3 3= 2(4_ NI_ 1+4_ NI_ 1) •

For the noncenter nodes lying on the _2-axis:

CN=2 ,

3 5
C1=(4_1--_'_1)(_+_N2_2) ,

For the center node, one again has:

CN=4 ,

C1=(4¢_-5¢!)(1-¢_) ,

N=3 and 9

N= 14

E. Second-Order Gradients

1. General Form

Second-order gradients arise in the velocity terms of the SIMPLER pressure correction

equation. Both dyadic and Laplacian forms (i.e., ONll, ij, and ONll, ii, respectively) must be considered

for accurate pressure estimates. Since the gradients pertain to velocity, only the second-order

gradient of the type 3 function need be considered. To derive an expression for the most general form,
ONHij, one begins by treating ONIt, i as the function to be differentiated in equation (A-17). That is:

._ _ :On)
ON,O_ (jj,)-1"_ ' N,i • (A-36)

Substitutionof the expression for ON1t,ifrom equation (A-17) intoequation (A-36) yields:

O_,ij = (Jjs)-' _-_s ((Jik)-1_}_l

which upon differentiation becomes:

{_llN,ij_.(jfl)--1 (_(Jik) -I _ _2_I_ I
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The local derivative in compact tensor form can be represented by generalizing equation (A-33) as:

= CNCtgtk •

Further application of the a/O_s operator yields:

where

(A-38)

_2tl_ H

"'_: = CNC'_g (A-39)
_ s_ k tk '

c;, = ac,

The local derivative of the Jacobian inverse is expressed in a similar way. Differentiating the

expression for (JiD -1 in equation (A-18) with respect to _s, one obtains:

O(Jik)-I eiee'k'n A'pms (A-40)
0_s - 41JI '

where

Apms OA pm
= '

and

alJ----[= 0 .

Substitution of equations (A-39) and (A-40) into equation (A-37) yields:

ON,O (Jjs)-l Cngipg_ "= 41JI (Av_Ck+Ap_Cks) "
(A-41)

Upon expanding ekm and the terms within parentheses, one obtains:

CNEiV [ (C1A'v21-C2A'pu+C'uApE-C2IApl)(Jjl)-' ] (A-42)_.,ij = 4lJ-'---]-[ +(C,A_22_C2A'?,2+CI2Av2_C'22Ap,)(Jj2)-' "

Applying the b/b_s operator to Apm in equation (A-23) yields an expression for A'pms. The

components of this tensor are:

'Avl I = 2ep+2hp_ 2+2pp , (A-43)

t

Apl 2 = Ap21 = dp+2gp_ 2+2hp_ l+4pp_ 1_ 2 ,

Ap22 2fp+2gp_ l+2pp_ 2
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The Ck and C'ks coefficients are obtained in a similar manner using the type 3 interpolation

formulas defined in equation (A-31). For the corner nodes, one has:

C1 = ¢ 2(_ _2¢ 2+1)(2¢ tvl_ 1+1) , N = 1, 3, 5, and 7 (A-44a)

Cz = ¢ l(_ ivl¢ 1+1)(2_ N2_ 2+1) ,

C;1 = 2¢ _qx 2(¢,v2¢ 2+ 1) ,

Ciz=C;,=(2¢u2¢2+l)(2_m_l+l) ,

C22= 2¢ t¢2¢ 1(_ Nl_ l +1) "

Formulation of the midside nodes follows in a similar manner. Note that for N = 2 or 6, o_ = 2 and

fl = 1, while for N = 4 or 8, o_= 1 and fl = 2.

For the center node:

ce=-2¢ e(¢_=¢_+¢ =),

Ca = (1-_ })(2¢ _va_ a+ 1) ,

c}e =-2¢ _(¢N_¢_+t),

C},, = C;/_ = -2¢/_(2¢ lv,,_x ,,+ 1) ,

C;== 2¢,va(1-¢}) .

C1 = ¢1(1-¢_) ,

C2 = ¢ 2(1-_ _) ,

c;, =(1-¢,2),

C;2 = C2, =-2¢ ,_,a,

C22 = (1-¢ _) .

N= 2 and 6; o_= 2 and fl= 1

N=4 and 8; a= 1 and fl= 2

(A-44b)

N=9 (A-44c)
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APPENDIX B

DESCRIPTION OF CIC COMPUTER PROGRAM

A. Introduction

The steady-state solutions presented in sections VI to VIII were obtained using the
Combined Interfacial Convection (CIC) program, which was written and specifically tailored to meet

the analytical needs of this study. The program employs the finite element equations derived in
section IV and calculates the tensor coefficients for these equations from the basis functions derived

in appendix A. The program includes a variety of data input and output options and permits

considerable flexibility regarding computer system usage.

The main product of each CIC run is a unit 9 output file that lists the xl and x2 coordinates, xl

and x2-component velocities, temperature, and dynamic pressure of each global node in the pore

domain. These data are calculated in a five-loop iteration procedure from the parameters and logic

options defined in a unit 7 input file.

CIC is written in Fortran 77 and was originally designed for interactive use on a Digital

Equipment Corporation (DEC) VAX. However, it soon became apparent that the element density

and interpolation orders required for accurate modeling of velocity, pressure, and temperature

variation in the interline and sidewall regions necessitated use of a Cray-XMP. Although the

program can be executed in an interactive mode, batch processing was used almost exclusively to

generate the results in this study.

The Cray-XMP was accessed through NASA Marshall Space Flight Center's Engineering

Analysis and Data System (EADS), which permitted simultaneous execution in several batch

queues. The entire compiled version of the CIC code ordinarily took from 4 to 7 Megawords of

memory to run depending on the initial dimension limits set in the program's internal arrays. The

smallest cases consisted of 25 by 20 element domains (MXE = 25 and MYE = 20) while the largest

were dimensioned for 34 by 25 elements (MXE = 34 and MYE = 25).

The following sections briefly describe the CIC program and provide general information
useful for future users of the code. A complete copy of the CIC source code, including all unique

subprograms needed to run with a standard Fortran 77 compiler, is given in appendix C.

B. Program Description

Apart from the convergence test for steady-state and the solution of meniscus geometry,

each iteration loop of the CIC program is structured around the calculation of velocity, pressure or

temperature using equations (88), (89), (83), (84), and (85). However, as was shown in appendix
A, the coefficient tensors in these equations (equation (86)) are formulated and calculated in terms

interpolation functions defined on the element-level. For example, the M 1a/_ tensor used in the finite

element equation for velocity is expressed in terms of the variable EA(e,n,m), where

e = global element number, n = local element corresponding to a, and m = local element

corresponding to ft. Since several local nodes can share the same global node location, construction
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of the coefficients in each finite element equation requires summing the contributions from all

elements in contact with the global node.

For velocity, velocity correction, and temperature (equations (88), (89), and (84),

respectively), the equation for each global node is solved sequentially until a convergence test

involving all node values is satisfied. The appropriate contributions from the locally defined nodes

and tensor coefficients are obtained via application of an association matrix CE(ng,eg). ng

corresponds to the global node number, while eg identifies the global elements contacting and

contributing to the finite element equation at ng. With the quadrilateral element geometry used in this

study, the maximum number of elements that can contribute to a single global node is four. The

number of elements eg associated with each ng value is stored in NCE(ng).

With the pressure correction (equations (83) and (85)), however, all the finite element

coefficients are constructed concurrently, and node pressures are solved using Gauss-Jordan

elimination. The coefficients associated with each global node are obtained by sequentially adding

local node contributions on an element-by-element basis.

In section IV and appendix A, the node configurations used to model parameter variation in

the element domain were defined. Each of these local nodes, in turn, has a global counterpart which

is referenced by the coefficients in the finite element equations for velocity, pressure and

temperature. Regardless of the method for summing the local contributions, a consistent matching

between the local and global numbering schemes is required.

For velocity, type 3 elements (fig. 6) are employed throughout the domain and nine local

nodes per element. The approach for numbering the global nodes is best exemplified by the 3 by 3

element domain on the left-hand side of figure B-1. All elements are defined by their global reference

e. The global node ng associated with any element's local node nl is given by ng = CQ(e,nl). CQ(e,nl)

and CE(ng,e s) are used to construct finite element coefficients for velocity.
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Figure B-1. Global node numbering scheme (velocity and temperature).
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The solution domain for temperatureis similar to that for velocity. Here, however, one
employs type 5 elementsin the uppercorners,type 4a elementsfor noncornerelementsalong the
meniscus, type 4b elements in noncorner elements along the sidewall and type 3 elements
throughoutthe rest of the domain. Referringagain to figure B-l, the domain consistsof 99 global
nodes--the first 49 of whichcoincidewith thedefinition usedfor velocity.The additional50 nodesin
the right-handdiagramaccountfor the extra local nodesneededfor the type 4 and 5 elements.

Becauseof the variety of elementtypes, a morecomplexapproachto the global/local node
associationmust be employed.The coincidencematrix that matchesthe local node number to its
appropriateglobal value is embodiedin the programvariablesCQ(e,nl), C24(e2,n2)and C44(e3,n3).
When summing type 3 elementcontributions,which is donethroughout the interior elements,the
global nodeis specifieddirectly by thevalueof CQ(e,nl), wheree - global element number and nl -

local node number. When the summing involves type 4 or 5 elements, the C24 and C44 arrays are

used. Unlike CQ, the element number index for these arrays matches the ordering of type 4 and 5

elements in the domain, namely e2 and e3. Translation of the e designation, which is used to identify

element contributions with CE(ng,eg), into e2 and e3 is accomplished through the array ECL(e,m).

ECL(e,1) denotes the element type, where ECL(e,1) = 0, 1 or 2 specifies whether e is a type 3, 4 or

5 element, respectively. For e values in which ECL(e,1) ,: 0, ECL(e,2) represents the e2 or e3 value

corresponding to e.

The coincidence matrices are used primarily to relate the locally defined tensor coefficients to

the global nodes referenced in the finite element equations. An example is the designation of the

global node corresponding to the first sidewall element's (e = 4 and e2 = 2) fifth local node (n2 = 5).

The global node is obtained from the compound expression C24(ECL(4,2),5) = 31, where ECL(4,1)

= 1 (type 4 element) and ECL(4,2) = 2 (e2 designation). Similarly, the global node for the fourth local

node (n3 = 4) of the second corner element (e = 3 and e3 = 2) is determined from C44(ECL(3,2),4) =

83, where ECL(3,1) = 2 (type 5 element) and ECL(3,2) = 2 (e3 designation). Note that element

types 4a and 4b are distinguished by whether e _<NXE (number of elements in xl-direction) or e >

NXE, respectively.

The same type of bookkeeping procedure is used with pressure. Here, however, the solution

routine is based on the simpler global geometry shown in figure B-2.
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Figure B-2. Global node numbering scheme (pressure).
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The ECL(e,1) values of 0, 1 and 2 now correspondto type 1, 2 and 3 elements,and the
coincidence arrays associatedwith theseelementsare CL(el,nl), CLLQ(e2,n:) and CLQ(e3,n3),
respectively.CLLQ and CLQ play the samerole asC24 andC44 before.However,CL is referenced
accordingto the label el which represents the ordering of type 1 elements.

Although the Gauss-Jordan solution routine employs the node definition shown in figure B-2,
CIC output of flow parameter values (including pressure), and the CL, CLLQ, and CLQ coincidence

matrices are based on the velocity-node definition in figure B-1. To construct the finite element

coefficients for pressure, CIC employs an additional array, CNODE(nv), which associates the

velocity-based global node nv to that of pressure np by np = CNODE(nv). Note that most of the nv-

values lack an associated n t, designation. At the completion of each pressure iteration, the results

are recast in terms of the velocity reference via nv = GNODE(np).

The manipulation and use of coincidence arrays is potentially the most confusing aspect of the

CIC program. The rest of the algorithms and procedures are more straightforward and are
documented in the comment blocks of the source code listed in appendix C. To facilitate future

reference, a summary of key program variables, excluding those included in the data read in

statements, is provided in table B-1.

Table B-1. Key CIC program variables.

Code Parameter I/D*

MXE, MYE I Specifies maximum number of elements in x 1 and x2 directions for code sizing purposes.
Specified in PARAMETER statement.

XI(m,n) D _1 and _2 absissae values for Gaussian quadrature integration, m - NPOINT + 1. n -- _1

or _2 direction.

W(m) D Ordinate values corresponding to XI for Gaussian quadrature integration, m -- NPOINT +
1.

Al(m) to Dl(m) D ap to dp Coefficients for 1st order approximation between xp -- xp(xk).

XINL(m,n) D Naturalized coordinates for four local nodes in type 1 element, m - local node number, n

- _1 or _2 value.

XINLQ(m,n,p) D Naturalized coordinates for six local nodes in type 2 elements, m - local node number, n

- _1 or _2 value, p - type 2a or 2b element.

DETJL D Jacobian determinant for type 1 element.

A2(m) to P2(m) D ap to pp coefficients for 2nd order approximation between xp = xp(xk).

JINV(i,k) D Inverse Jacobian tensor for type 3 element. (Jik)-l.

XG(m,n) D x1 and x2 values for each global node. m - number of global node. n - Xl or x2 value.

XINQ D Naturalized coordinates for nine local nodes in type 3 element.

DErJQ D Jacobian determinant for type 3 element.

* I = User Controlled (Independent)/Determined by CIC (Dependent)

142



Code Parameter I/D

VEL(m,n) D

PSI(m) D

SURFL D

SURFN D

SURFT D

CL(m,n) D

CLLQ(m,n) D

CLQ(m,n) D

CQ(m,n) D

ECL(m,n) D

XSURF(m) D

YSURF(m) D

YSURF0(m) D

PSURF(m) D

PBUB(m) D

TSURF(m) D

SURFNN(m,n) D

SURFNT(m,n) D

IMODE I

Table B-1. Key CIC program variables (continued).

Description

xl andx2 velocity components for each global node. m - number of global node. n -=Xl or
x2 value.

Stream function values at each global node. m -- number of global node.

Surface length for each boundary element. Four boundaries.

xl and x2 normal components corresponding for SURFL element surfaces.

xl and x2 tangent components corresponding to SURFL element surfaces.

Global node number (global-local node coincidence matrix) for type 1 element
definition, m - element number, n = local node number.

Global node number (global-local node coincidence matrix) for type 2 element
definition, m --- element number, n = local node number.

Global node number (global-local node coincidence matrix) for type 3 element
definition, m - element number, n -- local node number.

Global node number (global-local node coincidence matrix) for type 3 element
definition, m - element number, n = local node number.

Association matrix

x 1 positions for surface parameter calculations, m = NXP.

y(s) values corresponding to XSURF values, m = NXP.

y(s) values for pure isothermal, static meniscus solution.

Pd values corresponding to XSURF values.

Corrected bubble points. -- Pvapor - PSURF

Surface temperature values corresponding to XSURF.

Surface normal vectors at points corresponding tO XSURF. m = NXP. n = nl or n2.

Surface tangent vectors at points corresponding to XSURF. m = NXP. n = nl or n2.

Computer system operation mode. = 0: VAX batch mode, = 1: VAX interactive mode,
and = 2: CRAY batch mode.
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Code Parameter

NLNQ

NLNL

TPARAM

ACCEL(m)

QIN(m)

SB(i,k)

SB2(i,k)

SC(i)

SC2(i)

NXP, NYP

NGNODE

NELEMENT

NROW, NCOL

NGNODE2

RA

VREC

NLNS

NLNC

Table B-1. Key CIC program variables (continued).

I Number of local nodes for type 3 element (9).

I Number of local nodes for type 1 element (4).

I Time step factor h. h = 0.5 for Crank-Nicholson scheme.

I Acceleration with respect to Earth gravity, m = components in -xl and -x2 direction.

I Heat input rate (disabled).

I 2nd-order surface variable integral matrix. = 30(_ik*3)ll e in Eq. 4.42.

I 4th-order surface variable integral matrix. = 5670(f_ik*3)ll e in Eq. 4.42.

I 2nd-order surface variable integral matrix. = 6(_i'2)/1 e in Eq. 4.35.

I 4th-order surface variable integral matrix. = 90(_i'2)11 e in Eq. 4.35.

D Number of global nodes in xl and x2 direction. NXP = 2NXE + 1.

D Number of global nodes based on type 3 element definition for all elements.

D Total number of elements.

D 2 x number of global nodes along top and side of domain.

D Total number of global nodes. Includes 4th-order temperature elements.

D Rayleigh number. --- BO*MAIN*RVOLSURF.

D Recoil parameter. -- CA*(FRHO-1)/REVAPIN**2.

D Number of local nodes for sidewall elements in pressure calculation.

D Number of local nodes for comer elements in pressure calculation.
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B. Input/Output Structure

CIC was originally developed to run interactively on the VAX, or in batch mode on either the

VAX or CRAY. These three options are distinguished by the integer flag IMODE which is controlled
via a DATA statement in the CAV module. IMODE = 0, 1, and 2 specifies an input/output format

compatible with VAX batch, VAX interactive and CRAY batch operations, respectively. Nearly all of
the steady-state parameter solutions obtained in this study were performed in the CRAY batch

mode, where IMODE = 2. This approach was preferred due to the sizable memory requirements of

the program.

The input/output file structure for this mode of operation is illustrated in figure B-3. This

figure identifies all the files needed to run a case. It consists of three input and four output files.

Input CIC Output

Un_tl
Command for Unit 9-tyt
graphics data dump into Unit 1
at end of next steady-sta
iteration

• "large3.ts2"

Unit2
Command for program

termination and output dump
into Unit 9 file

• "large3.tst"

IMain input data file
• "input.dat"

i

CAV

_Bm m w--_DIP

Unit3
Specified parameter set after
each time step

• "large3.dat"

Unlt8
General output of specified
parameter values

• "output.dat"

Unit9
Graphics output. Steady-state

parameter values at all nodes
• "plot.dat"

Unit 10
Graphics output at end of time

step. Enabled by Unit 1 file.
• "clrg3.dat"

/
Figure B-3. CIC input/output file structure.

The unit 7 input file is required to execute the CIC program and contains critical data, such as

parameter values, input/output control flags and heating regime. An example of this file is shown in
table B-2 along with a variable description list in table B-3. When IMODE = 2, the unit 7 file is

designated as "input.dat" prior to all read in or data manipulation statements.

145



TableB-2. CIC unit 7 input file.

1 2 3 4 5 6 7

123456789012345678901234567890123456789012345678901234567890123456789012

Case ICOI

Pr lambda frho Bo Bie Ma Rs Cr

e0 e-I e+3 e-6 e+l e+3 e-i e-8

HUGE3

DATA SET: FILE SPECIFICATION

Unit 8 output file flag (IOUT8)

Unit 9 output file flag (IOUT9)

Sidewall heating option (ITYPE)

Press interp func option (IPRESS)

Surf param inclusion option (ICURVE)

Meniscus symmetry flag (ISYMM)

Steady-state init tenlo flag (ISSTEMP)

DATA SET: PROPERTY DATA

Contact angle (CANG)
Bond number (BO)

Capillary number-disabled (CA)

Marangoni number (MA)

Vol to surf resp ratio (RVOLSURF)
Prandtl number (PR)

Evaporation resistance (REVAP)

Crispation number (CR)

Liq dens/vapor dens (FRHO)
Dimensionless lat heat (LHS)

Biot number (BI)

Reference corner press (PCORNER)
Initial liq temperature (TINIT)

Aspect ratio- height/width (RASPECT)

1 5000E+01

1 0000E-06

1 0000E-20

1 0000E+03

1 0000E-01

1 0000E+00

1 0000E+03
1 0000E-08

1 0000E+03

1.0000E+30
1.0000E+02

8.0000E+05

1.0000E+00

1.0000E+00

DATA SET: CONVERGENCE CRITERIA

Vel conv error tolerance (VTOL)

Press conv error tolerance (PTOL)

Temp conv error tolerance (TTOL)

Steady-state conv tolerance (SSTOL)
Meniscus conv tolerance (MENTOL)

Max time increment (DELTMAX)

1.0000E-03

2.0000E-03

5.0000E-05

1.0000E-04

1.0000E-03

1.0000E-04

DATA SET: STEP AND INTERVAL DATA

Maximum number of time steps (NTSTEP)

Number elements in Xl-direction (NXE)

Nttmber of side elements (NSMALL(1))

Scaling ratio (FSCALE(1))
Number elements in X2-direction (NYE)

8000

35
0

2.0000E+00

3O
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Table B-2. CIC unit 7 input file (continued).

Number of side elements (NSMALL(2))

Scaling ratio (FSCALE(2))

Number quadrature integ pts (NPOINT)

Meniscus integ interval size (NINT)

# Marangoni number ramp-up steps

# Revap resistance ranl3-up steps

DATA SET:

Nodes printed out for

Interactive Display

PLOT AND OUTPUT SPECIFICATIONS

1 2

72 73

143 144

214 215

285 286

356 357

Number of isotherms (unit 9 only)

Number of streamlines

Number of isobars

Plot velocity scale (unit 9 only)

Plot arrow scale

Plot arrow angle

0

2.0000E+00

3

i0000

1

1

3 4

74 75

145 146

216 217

287 288

358 359

20

20

8O

3.0000E-01

2.0000E-02

2.0000E+01

5

76

147

218

289

360

6

77

148

219

290

361
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Table B-3. CIC input file variable description.

Parameter

lines 1 and 2

lines 3 to 5

line 6

QUETYPE

IOUT8

IOUT9

ITYPE

IPRESS

ICURVE

ISYMM

ISSTEMP

CANG

130

CA

MAIN

RVOLSURF

PR

REVAPIN

CR

FRHO

LHS

BI

PCORNER

TINIT

C

C

I

I

R

R

R

R

R

R

R

R

R

R

R

R

R

Space location reference. Skipped by CAV read statement.

User title and file description. Copied onto unit 8 output file.

Skipped by CAV read statement.

Queue type specification for batch execution on the NASA MSFC EADS1 Cray-XMP.

QUETYPE controls read in of unit 1 and 2 files, and creation unit 3 and 10 files. Possible

queue types are "HUGE3", "HUGE2", "LARGE4", "LARGE3" AND "LARGE2".

Unit 8 output option flag. = 0: no unit 8 output, = 1: abbreviated unit 8 output, and -- 2:

full-size unit 8 output.

Unit 9 output option flag. = 0: no unit 9 output, and = 1: unit 9 output created at

completion of meniscus convergence.

Heating mode option flag. = 0: superheated, isothermal conditions along boundaries 1, 2

and 3, and = 1: subcooled conditions over the same boundaries.

Option flag dictating pressure interpolation order in comer, sidewall and meniscus

elements. = 0: lst-order (type I) elements throughout domain. = 1: type 3 in comers and

type 2 along sidewall and meniscus.

Variable inclusion option for meniscus calculation. = 0: hydrostatic pressure (Bo term). =

1: Bo and Pd terms. -- 2: Bo and recoil (Vr) terms. _- 3: Bo and surface tension variation

(Cr) terms. = 4: Bo, Pd and Vr terms. -- 5: Bo, Pd and Cr terms. -- 6: Bo, Vr and Cr terms.

= 7: Bo, Pd, Vr and Cr terms. = 8: Viscous stress terms only. = 9: All surface variables.

Symmetry option. = 1: meniscus integration performed on only one side.

Initial basic state temperature flag. = 1: basic state used as initial temperature distribution.

Contact angle co (deg)

Bond number Bo

Capillary number Ca. Calculated from Ca = CRIMa if Ma _ O. Input value of Ca used if

Ma =0.

Marangoni number Ma.

Thermal response ratio _..

Prandfl number Pr

Interfacial resistance Rs

Crispation number Cr

Ratio liquid/vapor density fp.

Latent heat parameter A.

Blot number Bi.

Reference pressure in comers for calculation*

Initial liquid temperature. Needed only if ISSTEMP # 1.
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TableB-3. CIC input file variabledescription(continued).

RASPECT R

VTOL R

PTOL R

TIDL R

SSTOL R

MENTOL R

DELTMAX R

NTSTEP R

NXE, NYE R

NSMALL(m) I

FSCALE(m) R

NPOINT I

NINT I

NMA I

NREVAP I

PNODE(m) I

NCONTOUR I

XARROW R

Aspect ratio = 1.

Tolerance for velocity calculation iteration.

Convergence tolerance for pressure calculation iteration.

Convergence tolerance for temperature calculation iteration.

Convergence tolerance for steady-state convergence.

Convergence tolerance for meniscus convergence.

Initial estimate and maximum time step value.

Maximum number of time steps in each steady-state iteration.

Number of elements in Xl and x2 directions. Controls size of numerical domain.

Number of elements to scale width-wise along sidewalls (m = 1) and along meniscus (m =

2). Set = 0 for normal sizing.

Scale factor used with NSMALL. Disabled when NSMALL(m) = 0.

Number of points for Gaussian quadrature integration.

Number of subintervals for meniscus integration and calculation. As calculated by dividing

pore half-cavity width by NINT.

Number of time steps for Ma to reach specified MAIN value. Relaxes and eases

convergence for high Ma.

Number of time steps for Rs to reach specified REVAPIN value. Relaxes and eases

convergence for low Rs.

Global nodes printed out in unit 3 and 8 outputs. Must specify 36 node numbers in form

shown in sample unit 7 input file. m --- global node number. PNODE(m) -- global node

number.

Dummy variable used to copy required graphics program data from unit 7 to unit 9.

Represents number of isotherms, streamlines and isobars for plot package.

Dummy variable used to copy required graphics program data from unit 7 to unit 9.

Designates arrow properties for velocity vector graphics.

The other two input files enable review of iteration progress and a limited degree of program

control during batch execution. The name of the file that is read in depends on the QUETYPE

assignment in the unit 7 file. For example, the names given in figure B-3 pertain to a case run in the

"large3" queue. Note that the name used for the queue depends entirely on the system used. These

correspond to the designations used by the EADS1 system at NASA MSFC.

The unit 1 file consists of a single line containing a value of 0 or 1 for the variable ICHK, as

shown in the example in table B-4. The file is checked at completion of every time step. Changing

the value of ICHK to 1 causes CAV to print out a complete variable/node summary (unit 9-type

output) which is automatically dumped into the unit 10 output file. Note that the unit 10 output is

also generated at the end of every steady-state iteration. If ICHK = 1, ICHK is reset to 0 at the

completion of the unit 10 data dump.

Table B-4. CIC unit 1 input file.

Graphics printout? (:O:no; =l:yes) 0

The unit 2 file also consists of a single line but specifies the value of the variable IGO. An

example of this file is shown in table B-5. Ordinarily, IGO is set to 1. When IGO = 0, the program is
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instructedto terminateprogramexecutionanddump thecurrentoutput variablecontentsinto theunit
9 output file. As with ICHK, the valueof IGO in unit 2 is resetto 1whenthis operationoccurs.

TableB-5. CIC unit 2 input file.

Continuation flag (=l:continue; =O:stop)

The most important output file from the standpoint of this study is the unit 9 file "plot.dat".

This file contains a summary of the input variables read in through unit 7 and a complete summary of
the velocity, temperature, stream function, pressure and node locations for each global node. Note

that only the global nodes associated with the type 3 velocity-based definition are printed out. This

file repeatedly provided the basic data used for graphics/plot applications, first-order surface

deformation and other parameter calculations. The generation of the unit 9 output is enabled by

setting IOUT9 = 1 in the unit 7 input file.

The unit 8 file provides a summary of velocity, temperature and pressure at the global nodes

specified in the PNODE array in unit 7. A total of 36 values can be printed out at each time. The size

of this file depends on the value of IOUT8 specified in unit 7. When IOUT8 = 2, an extensive

summary showing the parameter values at the end of each time step is recorded onto unit 8. With

IOUT8 = 1, the summary is briefer and only prints the values at the end of each meniscus iteration.

When IOUT8 = 0, no unit 8 file is generated. This file was extremely useful during the development

and testing of new algorithms and procedures in the CIC code.

An updated version of the unit 3 output file is created at the completion of each time step, and

it presents the variable values at the nodes specified in the PNODE array. It also shows the

convergence trends for all the iteration loop variables, including the meniscus and steady-state

temperature. This file is extremely useful for monitoring program status and execution.

As was mentioned before, the unit 10 output file is created in response to the value of ICHK

specified in unit 1. It is also generated after completion of steady-state convergence and before

initiation of the next meniscus iteration step.

C. Program/Subprogram Structure

CIC consists of a main program module (CAV) and 25 subprograms. The relationship

between CAV and its supporting subprograms is shown in figure B-4, and a listing of the entire

program source code is provided in appendix C. Following is a description of the various subprogram
elements.

CAV performs almost all of the general calculations in CIC. Its functions include: (1) file and

data initialization and input, (2) velocity, pressure, temperature and meniscus iteration loops and

convergence tests, and (3) data output. Callouts for all of the five main ancillary subprogram

functions (i.e., domain geometric initialization, calculation of finite element equation coefficient
tensors, meniscus calculation, stream function calculation and matrix solution) reside and are

sequenced within the CAV module.

The primary role of GEOM is to establish the global node/local node coincidence arrays

discussed in section B.2 and to calculate the coordinates for each global and local node. In addition,
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i GEOM [

QCAL

CAV

!
I

TENSCAL I

GEOM2
DPDXL

DPDXLQ

DPDXQ

DPDX24

DPDX4 ]

DPDXDYQJ

3QWEIGH'[

! EPS]

PHIL ]

PHIQ [

PHI24 [

PHI4 ]

' IMENISCUS ]

CURVE I

FUNC

FSIN

GAUSS

STREAM I

Figure B-4. CIC code structure.

geometric properties of surface elements, such as unit normal/tangent vectors and surface lengths,

are also determined. This subprogram is critical because it specifies the geometric characteristics
that enable calculation of finite element coefficients. The QCAL function is used several times to

estimate intermediate points in the quadratic elements. Based on the xl and x2 values at three

known points, it calculates second-order coefficients and outputs a value of x2 corresponding to an

input value of xl.

The GEOM2 subprogram was originally written to permit incorporation of smaller element

sizes in the upper corner and sidewall regions. Using FSCALE(2) and NSMALL(2) the elements in
the half-cavity along the sidewall and meniscus are contracted relative to those in the center. This

subprogram was used with marginal success and did not improve accuracy significantly. Its operation

is disabled by setting NSMALL = 0.

TENSCAL is called after GEOM in the CAV module and calculates the coefficient tensors

used in the CAV finite element equations. In the subprogram, (Ji_) -1 and weighting coefficients are

determined and used in several Gaussian quadrature integrations of the coefficients. These

integrations refer to several subprograms representing the interpolation functions and their various

gradient forms defined in appendix A. Once calculated, these coefficients are transferred back to the

main program via the TENSOR common block. In addition to the coefficients applied for the domain

variables, this subprogram also calculates the second-order surface tensor used in application of the

velocity Neumann condition for thermocapillary flow.

Calculation of the base function value at individual nodes is performed with five different

functions. For types 1 to 5, one has PHIL, PHILQ, PHIQ, PHI24, and PHI4, respectively. Calculation
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of the first-order gradients of the type 1 to 5 interpolation formulas are performed in DPDXL,
DPDXLQ, DPDXQ, DPDX24, andDPDX4. In all cases,(Jik)-l and the coordinate coefficients are
calculatedin TENSCAL and usedin the determinationof O_v,i.The SIMPLER pressurecorrection
equationcontains two terms containingsecond-ordergradients.Thesecoefficients make useof the
DPDXDYQ function.

TENSCAL calls out two othersubprograms.GQWEIGHT is usedto determinethe Gaussian
quadrature absissaeand ordinate values used in the TENSCAL integrations. These values are
permanently encoded via DATA statementsin the subroutine. Another function is EPS which
performsthe sameoperationasthe Einsteinpermutationsymbol e.ij.

The third main module called by CAV is the MENISCUS subroutine. In addition to controlling

the iteration and convergence check on meniscus solution, it also calculates the coefficients used in

the second-order representation of surface velocity and temperature, and the combined first/second-

order variation of pressure. Its ancillary function FUNC2 is used to estimate coefficients for a

logarithmic curve fit when Bi and the temperature gradient near the sidewall are very high.

The actual integral solution of the surface for each estimate of center line curvature is

performed in the CURVE subroutine. Here, the integration begins at the center line and continues

until the surface intercepts the sidewall. The resulting value of contact angle is used in MENISCUS

to estimate a new center line curvature and to guide convergence to a solution. The CURVE
subroutine calls two functions, FUNC and FSIN. FUNC calculates an intermediate value of

temperature or pressure based on the coefficients calculated in MENISCUS. Its logic distinguishes

between first, second-order, and logarithmic curve fits. FSIN is used merely to ensure a consistent

definition of the contour angle in instances where the curvature is negative along the surface.

The last two subprograms called by CAV are used in specific calculation procedures. GAUSS

is a Gauss-Jordan elimination routine that solves nodal pressure values given a coefficient and
objective matrix. STREAM is used prior to the unit 9 data dump and calculates stream function

based on the values of velocity and node coordinates.
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APPENDIX C

CIC PROGRAM SOURCE CODE

A. Main Program Module (CAV)

PROGRAM CAV

CWW*WWWW**W*WWWWWWW*WWWWWWWW*W*W*W*WW*WW**WWW*WWWW_WWWW_WWW_WWW_W

C Main program module of Combined Interfacial Convection (CIC) model.

C CIC calculates the steady-state velocities, stream functions,

C tenloeratures, pressures and surface morphology of a two-dimensional,

C rectangular liquid pore subjected to various heating conditions.

C Program employs finite element equations based on the Galerkinmethod.

C Vertical sides defined by solid isothermal surfaces while upper

C surface represented by deformable meniscus. Lower horizontal surface

C is open to large reservoir that permits liquid flow into and out of

C cavity. Evaporation or condensation allowed to occur depending on

C whether surfaces 1 to 3 are superheated or subcooledwith respect to

C the isothermal saturated vapor above the meniscus. The main convective

C effects accounted for in the model include: thermocapillary stress

C caused by surface temperature gradients, buoyancy, and interfacial

C mass transfer.

C

C This program represents a culmination of analytical efforts in support

C of the Liquid Acquisition Device Characterization, a NASA MSFC CDDF

C research project begun in Nov 1990. Final version of program written

C by EP53/George R. Schmidt on 3/17/93.

CWWWWWWWWWWWWWWWWW*WWWW*WWWWWWWWWW*W*WWW*W*WWWWWWWWWWWW*WWWWWWWWWWW*WWW

C Array dimension parameters

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

(MXE= 25, MYE= 20)

(MXN= I+2*MXE)

(MYN= I+2*MYE)

(MTE= MXE*MYE)

(MTN= MXN*MYN)

(MTE2= MXE-2+2* (MYE-I))

(MTEI= MTE-MTE2-2 )

(MTCI= (I+MXE) * (I+MYE))

(MTC2= 2* (I+MYE) +I+MXE+2)

(MTC= MTC I+MTC2 )

(MTN2 = MTN+4*MYN+2*MXN+ 8 )

! # elements in x & y direcs

[ # nodes in x-direction

! # nodes in y-direction

[ total # elements

' total # nodes (quadratic)

! # 6-node pressure elements

' # 4-node pressure elements

! # corner nodes

[ extra nodes for mixed press

[ total # press nodes

! tot # nodes (w/4th-order)

C Main program conrnon blocks

COMMON/VINTEG/XI(10,2),W(10)

COMMON/VLIN/AI(2),BI(2),CI(2),DI(2),XINL(4,2),XINLQ(6,2,2),DETJL

COMMON/VQUAD/

*A2 (2) ,B2 (2) ,C2 (2) ,D2 (2),E2 (2) ,F2 (2),G2 (2) ,H2 (2), P2 (2),

*XINQ (9,2), DETJQ, JINV(2,2),A(2),B(2),ADI (2),AD2 (2),BDI (2),BD2 (2)
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COMMON/GRID/
*XG(MTN2,2),VEL(MTN, 2),PSI(MTN),SURFL(4,MXE),SURFN(4,MXE, 2),

*SURFT(4,MXE, 2)

COMMON/GRIDTYPE/

*CL(MTEI,4),CLLQ(MTE2,6),CLQ(2,9),ECL(MTE, 2),CQ(MTE, 9),GNODE(MTC),
*CNODE(MTN),C24(MTE2,15),C44(2,25),PNODE(36),NSURF(4),

*SI/RFNODE(4,MXN),CSURF(4,MXE, 3),CE(MTN2,4),NCE(MTN2),

*CES(MXN, 2),NCES(MXN),IDIRICH(MTN2)

COMMON/SURFTYPE/ NESURF (4)

COMMON/TENSOR/

*EA (MTE, 9, 9),

*EA24V (MTE2,9,15),

*EA44V(2,9,25),

*EA24T (MTE2,15, 15),

*ED (MTEI, 9,4,2),

*EE (MTEI, 4,4),

*EF (MTEI, 4,9,2),

*EG(MTEI, 4, 9,2,9,2),

*EH(MTEI, 4,9,9,2,2),

*EQ (MTE, 9,2,9,2),

EB (MTE, 9,9,9,2),

EB24 (MTE2,15, 9,15,2),

EB44(2,25,9,25,2),

EA44T (2,25,25),

EDLQ (MTE2,9,6,2),

EELQ (MTE2,6, 6),

EFLQ (MTE2,6, 9,2),

EGLQ (MTE2,6,9,2,9,2),

EHLQ (MTE2,6, 9,9,2,2),

SAQ (MXE, 3,9),

EC (MTE, 9,9),

EC24 (MTE2,15, 15),

EC44 (2,25,25),

EDQ(2,9,9,2),
EEQ(2, 9,9),

EFQ(2,9,9,2) ,

EGQ(2,9,9,2, 9,2) ,
EHQ(2,9, 9,9, 2,2) ,

SAQ2 (2,5,25)

COMMON/MENVAR/

* ADUM(3,MXE),BDUM(3,MXE) ,CDUM(3,MXE),APDUM(2) ,AQD[/M(2)

COMMON/SURFACE/

*XSURF (MXN), YSURF (MXN), YSURF0 (MXN), PSURF (MXN), PBUB (MXN),

*TSURF (MXN), _ (MXN, 2 ),SITRFNT (MXN, 2 )

COMMON/PI/3T/

*IMODE, IOUTS,IOUT9

COMMON/MXTRAN/

>AMAT (MTC, MTC) ,BVEC (MTC) ,XVEC (MTC)

C Specification of other arrays and program variable types

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION
DIMENSION

YSTAT(MXN)

TEMP(MTN2),TEMP0(MTN2),PREV(MTN2,2)

PDYN(MTN),PDYN0(MTN)

VEL0(MTN,2),DVEL(MTN, 2)

DP(MTC)

ACCEL(2),NSN(3),NSMALL(2),FSCALE(2)
SB(3,3),SC(3),SB2(5,5),SC2(5)

DOUBLE PRECISION ADUM, BDUM, CDUM, DDUM, XSURF, YSURF, ALPHA, PSURF, TSURF

DOUBLE PREC IS ION SURFNN, SURFNT, YSURF 0,PBUB, APDUM, AQDUM, DVREC

DOUBLE PRECISION DCANG, DBO, DCA, DMA, DPR, DREVAP, DPREF, DRASPECT

DOUBLE PRECISION DSUM, YERR, DPVAP, MENTOL, DYREF, DBI, DCR, DFRHO

DOUBLE PRECISION Xl,X2,X3,VI,V2,V3,AC,BC,DER

INTEGER CL, CQ, CLLQ, CLQ, ECL, GNODE, CNODE, PNODE, SURFNODE, CSURF

INTEGER GAM, BETA, R, S, P,CE, CES, C24, C44

REAL MA, MNMI, MN3, MN4, JINV, LHS, MAIN

CHARACTER*I2 TITF, TITF2, QUETYPE

CHARACTER* 80 TIT (3)

CHARACTER* 40 TITLINE
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C Initialization of non-input parameters

DATA NLNQ,NLNL/9,4/ ! Number of local nodes (quad and linear)

DATA TPARAM/.5/ ! Time step factor (Crank-Nicholson)

DATA ACCEL/0.,I./ ! Normalized acceleration

IMODE= 2 ! 0= VAX batch, I= VAX inter, 2= CRAY batch

IGO= i ! Stop execution flag- used in CRAY batch mode

C Integral tensors used in formulating meniscus surface contributions

DATA (SB(I,I),I=I,3)/ 4., 2., -i./,

* (SB(2,I),I=I,3)/ 2., 16., 2./,

* (SB(3, I), I=i,3) / -I., 2., 4./

DATA (SB2(I,I),I=I,5)/ 292., 296.,-174., 56., -29./,

* (SB2(2,I),I=I,5)/ 296.,1792.,-384., 256., 56./,

* (SB2(3,I),I=I,5)/-174.,-384.,1872.,-384.,-174./,

* (SB2(4,I),I=I,5)/ 56., 256.,-384.,1792., 296./,

* (SB2(5,I),I=I,5)/ -29., 56.,-174., 296., 292./

DATA SC / I., 4., I./

DATA SC2/ 7., 32., 12., 32., 7./

C Input�output device assignment. Data input and read statements

IF (IMODE.EQ.2) THEN

OPEN(UNIT=7,FILE='input.dat',STATUS='UNKNOWN')

TITF= 'input.dat '

ELSE IF (IMODE.EQ.I) THEN

WRITE(6,1000)

READ(5,1040)TITF

OPEN(UNIT=7,FILE=TITF,STATUS='OLD')

ELSE

TITF= 'VAX.BATCH

END IF

READ

READ

READ

READ

(7,1002) (TIT(J),J=I,3)

(7,1070)QUETYPE,TITF2

(7,1003)TITLINE, IOUT8

(7,1003)TITLINE, IOUT9

IF (IMODE.EQ.2) THEN

IF (IOUT8.NE.0) OPEN(UNIT=8,FILE='output.dat',STATUS='UNKNOWN')

IF (IOUT9.NE.0) OPEN(UNIT=9,FILE='plot.dat',STATUS='UNKNOWN')

ELSE IF (IMODE.EQ.1) THEN

IF (IOUT8.NE.0) OPEN(UNIT=8,FILE='PORE.OUT',STATUS='NEW')

IF (IOUT9.NE.0) OPEN(UNIT=9,FILE='PORE.PLOT',STATUS='NEW')

END IF

IF (IOUTS.NE.0) WRITE(8,1002) (TIT(J),J=I,3)

READ (7,1003)TITLINE, ITYPE

IF (IOUT8.NE.0) WRITE(8,1003)TITLINE, ITYPE

IF (IOUT9.NE.0) WRITE(9,1073)TITLINE, ITYPE

READ (7,1003)TITLINE, IPRESS

IF (IOUT8.NE.0) WRITE(8,1003)TITLINE, IPRESS

IF (IOUT9.NE.0) WRITE(9,1073)TITLINE, IPRESS

READ (7,1003)TITLINE, ICURVE
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IF (IOUT8.NE. 0) WRITE(8,1003)TITLINE, ICURVE

IF (IOUT9.NE. 0) WRITE(9,1073)TITLINE, ICURVE

READ (7,1003)TITLINE, ISYMM

IF (IOUT8.NE. 0) WRITE(8,1003)TITLINE, ISYMM

IF (IOUT9.NE.0) WRITE(9, 1073)TITLINE, ISYMM

READ (7, 1003)TITLINE, ISSTEMP

IF (IOUT8.NE. 0) WRITE(8, 1003)TITLINE, ISSTEMP

IF (IOUT9.NE. 0) WRITE(9, 1073)TITLINE, ISSTEMP

READ(7,1070)TITF,TITF2

READ (7,1005)TITLINE, CANG

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE,CANG

IF (IOUT9.NE.0) WRITE(9,1074)TITLINE,CANG

READ (7,1005)TITLINE BO

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE, BO

IF (IOUF9.NE.0) WRITE(9,1074)TITLINE, BO

READ (7,1005)TITLINE CA

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE, CA

IF (IOUTg.NE.0) WRITE(9,1074)TITLINE,CA

READ (7,1005)TITLINE MAIN

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE,MAIN

IF (IOUT9.NE.0) WRITE(9,1074)TITLINE,MAIN

READ (7,1005)TITLINE, RVOLSURF

IF (IOUTS.NE.0) WRITE(8,1005)TITLINE, RVOLSURF

IF (IOUT9.NE.0) WRITE(9,1074)TITLINE,RVOLSURF

READ (7,1005)TITLINE PR

IF (IOUTS.NE.0) WRITE(8,1005)TITLINE, PR

IF (IOUTg.NE.0) WRITE(9,1074)TITLINE, PR

READ (7,1005)TITLINE, REVAPIN

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE,REVAPIN

IF (IOUT9.NE.0) WRITE(9,1074)TITLINE,REVAPIN

READ (7,1005)TITLINE,CR

IF (IOUTS.NE.0) WRITE(8,1005)TITLINE,CR

IF (IOUT9.NE.0) WRITE(9,1074)TITLINE,CR

READ (7,1005)TITLINEFRHO

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE,FRHO

IF (IOUTg.NE.0) WRITE(9,1074)TITLINE,FRHO

READ (7,1005)TITLINE, LHS

IF (IOUTS.NE.0) WRITE(8,1005)TITLINE, LHS

IF (IOUT9.NE.0) WRITE(9,1074)TITLINE, LHS

READ (7,1005)TITLINE, BI

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE, BI

IF (IOUT9.NE.0) WRITE(9,1074)TITLINE, BI

READ (7,1005)TITLINE PCORNER

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE, PCORNER

IF (IOUT9.NE.0) WRITE(9,1074)TITLINE, PCORNER

READ (7,1005)TITLINE, TINIT

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE,TINIT

IF (IOUT9.NE.0) WRITE(9, 1074)TITLINE,TINIT

READ (7, 1005)TITLINE RASPF_T

IF (IOUT8.NE.0) WRITE(8, 1005)TITLINE,RASPECT

IF (IOUT9.NE.0) WRITE(9, 1074)TITLINE,RASPECT

READ(7,1070)TITF,TITF2

READ (7,1005)TITLINE,VTOL

IF (IOUTS.NE.0) WRITE(8,1005)TITLINE,VTOL

IF (IOUT9.NE.0) WRITE(9,1074)TITLINE,VTOL

READ (7,1005)TITLINE, PTOL
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IF (IOUTS.NE. 0) WRITE(8, 1005)TITLINE, PTOL

IF (IOUT9.NE. 0) WRITE(9, 1074)TITLINE, PTOL

READ (7,1005)TITLINE,TTOL

IF (IOUTS.NE.0) WRITE(8, 1005)TITLINE,TTOL

IF (IOUT9.NE. 0) WRITE(9, 1074)TITLINE,TTOL

READ (7,1005)TITLINE, SSTOL

IF (IOUT8.NE. 0) WRITE(8,1005)TITLINE, SSTOL

IF (IOUT9 .NE. 0) WRITE (9,1074) TITLINE, SSTOL

READ (7,1005)TITLINE,MENTOL

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE, MENTOL

IF (IOUT9.NE. 0) WRITE(9,1074)TITLINE, MENTOL

READ (7, 1005)TITLINE,DELTMAX

IF (IOUTS.NE.0) WRITE(8, 1005)TITLINE,DELTMAX

IF (IOUT9.NE.0) WRITE(9, 1074)TITLINE,DELTMAX

READ(7,1070)TITF,TITF2

READ (7,1003)TITLINE,NTSTEP

IF (IOUT8.NE.0) WRITE(8,1003)TITLINE, NTSTEP

IF (IOUT9.NE.0) WRITE(9,1073)TITLINE, NTSTEP

READ (7,1003)TITLINE,NXE

IF (IOUTS.NE.0) WRITE(8,1003)TITLINE,NXE

IF (IOUT9.NE.0) WRITE(9,1073)TITLINE,NXE

READ (7,1003)TITLINE,NSMALL(1)

IF (IOUT8.NE.0) WRITE(8,1003)TITLINE,NSMALL(1)

IF (IOUT9.NE.0) WRITE(9,1073)TITLINE,NSMALL(1)

READ (7,1005)TITLINE, FSCALE(1)

IF (IOUT8.NE.0) WRITE(8,1005)TITLINE,FSCALE(1)

IF (IOUTg.NE.0) WRITE(9,1074)TITLINE,FSCALE(1)

READ (7,1003)TITLINE,NYE

IF (IOUTS.NE.0) WRITE(8,1003)TITLINE,NYE

IF (IOUTg.NE.0) WRITE(9,1073)TITLINE,NYE

READ (7,1003)TITLINE,NSMALL(2)

IF (IOUTS.NE.0) WRITE(8,1003)TITLINE,NSMALL(2)

IF (IOUT9.NE.0) WRITE(9,1073)TITLINE,NSMALL(2)

READ (7,1005)TITLINE,FSCALE(2)

IF (IOUTS.NE.0) WRITE(8,1005)TITLINE,FSCAI_(2)

IF (IOUTg.NE.0) WRITE(9,1074)TITLINE,FSCAI_(2)

READ (7,1003)TITLINE,NPOINT

IF (IOUTS.NE.0) WRITE(8,1003)TITLINE, NPOINT

IF (IOUT9.NE.0) WRITE(9,1073)TITLINE, NPOINT

READ (7,1003)TITLINE,NINT

IF (IOUTS.NE.0) WRITE(8,1003)TITLINE,NINT

IF (IOUTg.NE.0) WRITE(9,1073)TITLINE,NINT

READ (7,1003)TITLINE,NMA

IF (IOUTS.NE.0) WRITE(8,1003)TITLINE,NMA

IF (IOUT9.NE.0) WRITE(9,1073)TITLINE,NMA

READ (7,1003)TITLINE,NREVAP

IF (IOUTS.NE.0) WRITE(8,1003)TITLINE,NRE_AP

IF (IOUT9.NE.0) WRITE(9,1073)TITLINE,NREVAP

READ(7,1070)TITF,TITF2

DO 1 N=I,6

READ (7,1071)TITLINE,(PNODE((N-I)*6+K),K= 1,6)

IF (IOUTS.NE.0) WRITE(8,1071)TITLINE,(PNODE((N-I)*6+K),K=

CONTINUE

1,6)
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IF (IOUT9. GT. 0) THEN

WRITE (9,1072 )

DO 2 I=l, 3

READ (7, 1003 )TITLINE, NCONTOUR

WRITE (9, 1073 )TITLINE, NCONTOUR

CONTINUE

DO 3 I=l, 3

READ (7,1005) TITLINE, XARROW

WRITE (9, 1074 )TITLINE, XARROW

CONTINUE

TITLINE=' Number of top nodes

WRITE (9,1073 )TITLINE, 2*NXE+ 1

TITLINE=' Number of global nodes

WRITE(9, 1073)TITLINE, (2*NXE+I) * (2*NYE+I)

END IF

FT0= I.-TPARAM ! Temporal param factor (prev time step)

FTI= TPARAM ! Temporal param factor (current time step)

RA= BO*MAIN*RVOLSURF ! Rayleigh number

IF (MAIN.NE.0.) CA= CR*PR/MAIN

VREC= CA* (FRHO-I.)/REVAPIN/REVAPIN

IF (IPRESS.EQ.0) THEN

NLNS= 4

NLNC= 4

ELSE IF (IPRESS.EQ.I)

NLNS= 6

_= 9

END IF

THEN

IF (ITYPE. EQ. 0) THEN

TVAP= 0.

ELSE IF (ITYPE. EQ. i) THEN

TVAP= I.

END IF

C Marangoni and evap resistance step value

DELMA= MAINIREAL (NMA)

DELRINV= i. IREVAPINIREAL (NREVAP)

C Double precision representations of thermophysical parameters-input

C for meniscus calculation

DCANG= DBLE (CANG)

DBO= DBLE (BO)

DCA= DBLE (CA)

DMA= DBLE (MAIN)

DPR= DBLE (PR)

DBI= DBLE (BI)

DREVAP= DBLE (REIrAPIN)

DRASPECT= DBLE (RASPECT)

DYREF= DBLE (RASPECT)

DCR= DBLE (CR)

DFRHO= DBLE (FRH0)

DVREC= DBLE (VREC)

C Number of nodes, elements and velocity values
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NXP= 2*NXE+I

NYP= 2*NYE+I

NGNODE= NXP*NYP

NELEMENT= NXE*NYE

NROW= 2*NXP

NCOL= 2*NYP

NVEL= 2*NGNODE

NGNODE2= NGNODE+4*NYP+2*NXP+8

' # global nodes in Xl-direction

, # global nodes in X2-direction

! # global nodes (quad var)

! # elements

! # global nodes in Xl row of elements

, # global nodes in X2 col of elements

, # velocity values

! # nodes (4th-order var)

C Initial reference for surface geometry and conditions

DO 4 K= I,NXP

PSURF(K) = 0.

PBUB (K) = 0.

TSURF (K) = TVAP

YSURF0 (K) = DRASPECT

4 CONTINUE

C Variable grid geometry control

CALL GEOM2(NXE,NYE,NXP,NROW, NSMALL,RASPECT,FSCALE)

C Static, isothermal meniscus geometry (T= 0)

CALL MENISCUS (DCANG, DBO, DCA, DMA, DPR, DBI, DREVAP, DPREF, DRASPECT,

> DPVAP, D_, DCR, DFRHO, DVREC, NINT, NXP, ISYMM, ICURVE, ITYPE,

> IPRESS)

PREF= REAL (DPREF )

IF (IMODE.EQ.I) THEN

WRITE(6,1073) ' STATIC MENISCUS GEOMETRY',0

WRITE(6,1007) 0

END IF

DO 5 K= I,NXP

IF (IMODE.EQ.I) WRITE(6,1008)K,XSI/RF(K),YSURF(K),

> SURFNN(K,I),SLrRFNN(K,2),SnJRFNT(K,I),SURFNT(K,2)

YSTAT(K)= YSURF(K)

YSURF0(K)= YSURF(K)

5 CONTINUE

IF (ISSTEMP.EQ.I) THEN

CALL GEOM (NXP, NYP, NXE, NYE, NGNODE, NELEMENT, NCORNER, NROW, NCOL,

> I PRESS, NGNODE2, RASPECT, DXE, DYE, DXN, DYN, DXMIN, DYMIN, VOL)

CALL TENSCAL (NELEMENT, NLNQ, NLNL, NPOINT, I PRESS, PR, PVAP)

DO i0 NG= i, NGNODE2

IF (IDIRICH(NG) .EQ. 0)

PREV (NG, i) = 1. -TVAP

ELSE

TI_4P (NG) = I. -TVAP

PREV(NG, i)= TEMP(NG)

END IF

i0 CONTINUE

THEN

DO 20 ITTEMP= 1,1000000
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DO ii NG= I,NGNODE2

IF (IDIRICH(NG).EQ.I)

AMAT0= 0.

BVEC0= 0.

G(_O ii

DO 14 NNE= I,NCE(NG)

12

13

NE: CE (NG, NNE)

IF (ECL(NE, I).EQ.0) THEN

NP= NLNQ

ELSE IF (ECL(NE, I).EQ.I) THEN

NP= 15

ELSE IF (ECL(NE, I) .EQ.2) THEN

NP= 25

END IF

DO 12 N= I,NP

IF (ECL(NE, I).EQ.0) THEN

IF (CQ(NE,N).EQ.NG) GOTO 13

ELSE IF (ECL(NE, I).EQ.I) THEN

IF (C24 (ECL (NE, 2), N). EQ.NG)

ELSE IF (ECL(NE, I).EQ.2) THEN

IF (C44 (ECL (NE, 2) ,N). EQ.NG)

END IF

CONTINUE

STOP

CONTINUE

GOTO 13

GOTO 13

14

DO 14 M= I,NP

IF (ECL(NE, I).EQ.0) THEN

MG: CQ (NE, M)

IF (MG.EQ.NG) THEN

AMAT0= AMAT0+EC (NE,N,M)/PR

ELSE

BVEC0= BVEC0-EC (NE, N, M)/PR*PREV(MG, i)

END IF

ELSE IF (ECL(NE, I).EQ.I) THEN

MG= C24 (ECL(NE, 2) ,M)

IF (MG.EQ.NG) THEN

AMAT0= AMAT0+EC24 (ECL (NE, 2) ,N,M)/PR

ELSE

BVEC0= BVEC0-EC24 (ECL (NE, 2 ),N, M)/PR*PREV (MG, i)

END IF

ELSE IF (ECL(NE, I).EQ.2) THEN

MG= C44 (ECL(NE,2) ,M)

IF (MG.EQ.NG) THEN

AMAT0= AMAT0+EC44 (ECL(NE, 2) ,N,M)/PR

ELSE

BVEC0= BVEC0-EC44 (ECL (NE, 2) ,N,M)/PR*PREV(MG, i)

END IF

END IF

CONTINUE

C TEMPERATURE BOUNDARY CONDITIONS

C MIXED T_2_PERATURE BC FOR SURFACE 4

IF ((NG.LE.NXP).0R.(NG.GE.NGNODE+I.AND.NG.LE.NGNODE+4)) THEN
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IF (NG.LE.NXP) THEN

NP= NCES (NG)
ELSE

NP= 1

END IF

DO 15 NNE= I,NP

IF (NG.LE.NXP) THEN

NE= CES (NG,NNE)

ELSE IF (NG.LE.NGNODE+2) THEN
NE= 1

ELSE

NE= NESURF (4)
END IF

IF (NE.EQ.I.OR.NE.EQ.NESURF(4)) THEN
DO 18 N= 1,5

18 IF (C44(ECL(NE,2) ,14-N) .EQ.NG) GOTO 19
STOP

19 CONTINUE

DCOEFF= -i. *BI/PR*SLrRFL(4,NE)/5670.

NM= 5

IF (ITYPE. EQ. i)

> BVEC0= BVECO+BI/PR*SURFL(4,NE) *SC2 (N)/90.
ELSE

DO 16 N= 1,3

16 IF (CSURF(4,NE,N) .EQ.NG) GOT0 17

STOP

17 CONTINUE

DCOEFF= -i. *BI/PR*SLrRFL (4,NE)/30.
NM= 3

IF (ITYPE. EQ. i)

> BVEC0= BVEC0+BI/PR*SURFL(4,NE) *SC (N)/6.
END IF

15

DO 15 M= I,NM

IF (NE.EQ.I.OR.NE.EQ.NESURF(4)) THEN

MG= C44 (ECL(NE, 2), 14-M)
IF (MG.NE.I.AND.MG.NE.NXP) THEN

IF (MG.EQ.NG) THEN

AMAT0= AMAT0-DCOEFF*SB2 (N,M)

ELSE

BVEC0= BVE_0+DCOEFF*SB2 (N,M) *PREV(MG, i)
END IF

END IF

ELSE

MG= CSURF (4,NE, M)

IF (MG.EQ.NG) THEN
AMAT0= AMAT0-DCOEFF*SB (N,M)

ELSE

BVEC0= BVEC0+DCOEFF*SB (N,M) *PREV(MG, I)

END IF

END IF

CONTINUE

END IF

TEMP (NG) = .3* (BVEC0/AMAT0-PREV (NG, 1))+PREV (NG, 1 )
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ii CONTINUE

9318

TOTV= 0.

VERR= 0.

DO 9318 NG= i,NGNODE2

TOTV= TOTV+PREV (NG, 1)*PREV (NG, 1 )
ERR= T_4P (NG) -PREV (NG, i)

VERR= VERR+ERR*ERR

PREV(NG, i)= TEMP(NG)

CONTINUE

IF (TOTV.NE. O. ) THEN

FERR= SQRT (VERR/TOTV)
ELSE

FERR= i.

END IF

1083

IF (IMODE.EQ.I) THEN

WRITE(6,1083)FERR

FORMAT(' TEMP ERROR= ',E12.6)
WRITE(6,1025)

WRITE(6,1022)(TEMP(PNODE(N)),N=I,36)

END IF

C Intermittent update and continuation check

IF (IMODE.EQ.2) THEN

IF (QUETYPE. EQ. 'HUGE3 ') THEN

OPEN (UNIT=2, FILE= 'huge3, tst', STATUS=' OLD' )

OPEN (UNIT=3, FILE=' huge3, dat', STATUS=' UNKNOWN' )

ELSE IF (QUETYPE. EQ. 'HUGE2' ) THEN

OPEN (UNIT=2, FILE= 'huge2. tst', STATUS=' OLD' )

OPEN (UNIT=3, FILE= 'huge2 .dat', STATUS= 'UNKNOWN' )
ELSE IF (QUETYPE. EQ. 'LARGE4' ) THEN

OPEN (UNIT=2, FILE=' large4, tst', STATUS=' OLD' )

OPEN (UNIT=3, FILE=' large4, dat', STATUS=' UNKNOWN' )
ELSE IF (QUETYPE. EQ. 'LARGE3' ) THEN

OPEN (UNIT=2, FILE=' large3, tst ',STATUS= 'OLD' )

OPEN (UNIT=3, FILE=' large3, dat', STATUS=' UNKNOWN' )

ELSE IF (QUETYPE. EQ. 'LARGE2 ') THEN

OPEN (UNIT=2, FILE=' large2, tst ',STATUS=' OLD' )

OPEN (UNIT=3, FILE=' large2, dat', STATUS=' UNKNOWN' )
ELSE

OPEN (UNIT=2, FILE=' other, tst', STATUS=' OLD' )

OPEN (UNIT=3, FILE=' other, dat', STATUS= _UNKNOWN' )
END IF

READ(2,1003) TITLINE, IGO

CLOSE(2)

WRITE (3,3919) ITMEN, i.
WRITE (3, 1030) ITTEMP, TIME

WRITE (3, 6391 )VSSCON, PSSCON, FERR

WRITE (3,1025)

WRITE (3,1022) (TEMP (PNODE(N)) ,N= i,36)

CLOSE (3)
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IF (IGO.EQ.0) THEN

IF (QUETYPE.EQ. 'HUGE3' ) THEN

OPEN (UNIT=2, FILE= huge3, tst ', STATUS=' UNKNOWN'

ELSE IF (QUETYPE.EQ. 'HUGE2 ') THEN

OPEN (UNIT=2, FILE= huge2, tst ', STATUS= 'UNKNOWN'

ELSE IF (QUETYPE. EQ. 'LARGE4' ) THEN

OPEN(UNIT=2,FILE= large4 .tst ', STATUS= 'UNKNOWN )

ELSE IF (QUETYPE. EQ. 'LARGE3 °) THEN

OPEN (UNIT=2, FILE= large3, tst ', STATUS= 'UNKNOWN )

ELSE IF (QUETYPE. EQ. 'LARGE2 ') THEN

OPEN (UNIT=2, FILE= large2, tst ', STATUS= 'UNKNOWN )

ELSE

OPEN (UNIT=2, FILE= other, tst ° ,STATUS= 'UNKNOWN' )

END IF

WRITE(2,1003) TITLINE, 1

CLOSE (2 )

GOTO 503

END IF

END IF

IF (FERR.LE.TTOL) GOTO 30

20 CONTINUE

30 CONTINUE

DO 9319 NG= I,NGNODE2

9319 TEMPO (NG) = TEMP(NG)

END IF

NB= NGNODE-NXP

DO 21 K= I,NXP

IF (ISSTEMP.EQ. I) THEN

TSURF (K) = TEMP (K)

ELSE

TSLrRF (K) = DBLE(TINIT)

END IF

21 CONTINUE

MA= 0.

RINV= 0.

DO 500 ITMEN= i,i00

CALL MENISCUS (DCANG, DBO, DCA, DMA, DPR, DBI, DREVAP, DPREF, DRASPECT,

> DPVAP, DYREF, DCR, DFRHO, DVREC, NINT, NXP, ISYMM, ICURVE, ITYPE,

> IPRESS)

PREF= REAL (DPREF)

IF (IOUT8.GE.2) WRITE(8,1007) ITMEN

IF (IMODE.EQ.I) WRITE(6,1007) ITMEN

DO 501 K= I,NXP

IF (IOUT8.GE.2) WRITE(8,1008)K,XSURF(K),Y_(K),
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> _(K,I),SURFNN(K,2),_(K,I),_(K,2)

IF (IMODE.EQ.I) WRITE(6,1008)K, XSURF(K),YSURF(K),
> SURFNN(K,I),SURFNN(K,2),ST]RFNT(K,I),SURFNT(K,2)

501 CONTINUE

DSUM= 0.

YERR= 0.

DO 502 K= I,NXP, 2
DSUM= DSUM+YSURF0 (K) *YSURF0 (K)

YERR= YERR+ (YSURF (K) -YSURF0 (K)) * (YSURF (K) -YSURF0 (K))

502 CONTINUE

YERR: DSQRT (YERR/DSUM)

IF (YERR. LE. MENTOL. AND. ITMEN. ST. I) THEN

IF (IOUT9. EQ. i) THEN
TITLINE:' MENISCUS DIM CHARACTERISTICS'

WRITE (9, i073) TITLINE, 0

DO 603 K= I,NXP

WRITE (9, 1009 )XSURF (K), YSTAT (K), YSURF (K), _3RFNN (K, 1 ),

> SURFNN (K, 2), SURFNT (K, i), SURFNT (K, 2)

603 CONTINUE
END IF

GOTO 503

END IF

DO 509 K= I,NXP
509 YSURF (K) = .5* (YSURF (K) +YSURF0 (K))

DO 521 K= I,NXP

IF (K.EQ.I) THEN

KREF= 2

ELSE IF (K.EQ.NXP) THEN

KREF= NXP-I
ELSE

KREF= K

END IF

YSURF

YSURF

YSURF
XSURF

XSURF

XSURF

Vl: KREF-I)

V2= KREF)

V3= KREF+I)
Xl= KREF-I)

X2= KREF)

X3= KREF+I)

AC: ((V1-V2) / (XI-X2) - (V2-V3) / (X2-X3)) / (Xl-X3)

BC: (VI-V2) / (XI-X2) -AC* (XI+X2)

DER= 2.*AC*XSURF(K) +BC

SURFNT (K, I) = i./DSQRT (DER**2+I.)

SURFNT (K, 2) = DER* S[TRFNT (K, 1 )

SURFNN (K, 1 )= -i. *SURFNT (K, 2 )

SLrRFNN (K, 2 )= SURFNT (K, i)

YSURF0 (K) = YSURF (K)

CONTINUE521

CALL GEOM(NXP,NYP,NXE,NYE,NGNODE,NELEMENT,NCORNER, NROW, NCOL,
> IPRESS,NGNODE2,RASPECT,DXE,DYE,DXN, DYN,DXMIN,DYMIN,VOL)
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C ELEMENT TENSORS

CALL TENSCAL (NELEMENT, NLNQ, NLNL, NPOINT, IPRESS, PR, PVAP)

C DEPENDENT VARIABLE INITIALIZATION

C Velocities and pressures. Set equal to zero at all points.

504

506

507

IFREEZE= 1

DELT= DELTMAX

TSSCON= i.

DO 504 N= I,NGNODE

PDYN0 (N) = PCORNER

PDYN(N) = PDYN0 (N)

PSI (N) = 0.

DO 504 K= 1,2

VEL0 (N, K) = 0.

VEL (N, K) : VEL0 (N, K)

CONTINUE

IF (ISSTEMP.NE. i) THEN

DO 506 N= I,NGNODE2

TEMPO (N) = TINIT

TEMP (N) = TEMPO (N)

CONTINUE

ELSE

DO 507 N= I,NGNODE2

TEMPO (N) = TEMP (N)

CONTINUE

END IF

IF (IMODE.EQ.I) THEN

WRITE(6,1020)

WRITE(6,1021)

WRITE(6,1022)(VEL(PNODE(N),I),N= 1,36)

WRITE(6,1023)

WRITE(6,

WRITE(6,

WRITE(6,

WRITE(6,

WRITE(6,

END IF

IF (IOUTS.GE.2

WRITE(8,1020

WRITE(8,1021

WRITE(8,1022

WRITE(8,1023

WRITE(8,1022

WRITE(8,1024

WRITE(8,

WRITE(8,

WRITE(8,

END IF

1022)(VEL(PNODE(N),2),N= 1,36)

1024)

1022)(PDYN(PNODE(N))-PDYN(NGNODE),N=

1025)

1022)(TEMP(PNODE(N)),N= 1,36)

) THEN

)
)

) (VEL(PNODE(N), i) ,N= i, 36)

)
) (VEL(PNODE(N) ,2) ,N= 1,36)

)

1,36)

1022)(PDYN(PNODE(N))-PDYN(NGNODE),N= 1,36)

1025)

1022)(TEMP(PNODE(N)),N= 1,36)
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166

C TIME INTERVAL/STEPPINGI/DOP

TIME= 0.

ICONV= 0

MA= 0.

RINV= 0.

ITCONV= 0

DO 900 ITIME= 1, NTSTEP

IF (ITIME.NE.2) THEN

IF (MA.LT.MAIN) THEN

MA= MA+DELMA

ELSE IF (MA. GE. MAIN) THEN

MA-- MAIN

END IF

IF (RINV. LT. i./REVAPIN) THEN

RINV= RINV+DELRINV

ELSE IF (I./REVAP.GE.I./REVAPIN) THEN

RINV= I./REVAPIN

END IF

REVAP= i./RINV

END IF

IF (IMODE.EQ.I) WRITE(6,1038)ITIME

DO i00 ITTEMP= I, i0000

IF (IMODE.EQ.I) WRITE(6,1042)ITTEMP

IF (ITIME.EQ.I.AND.ITTEMP.EQ.I) GOTO i01

Volumetric flowrate through upper surface due to evaporation

DXMIN= XG (NGNODE, i) -XG (NGNODE- i, 1 )

QFLOW= 0.

DO 102 NE= I,NESURF(4)

SUM= 0.

IF (NE.EQ.I.OR.NE.EQ.NESURF(4)) THEN

NM= 5

ELSE

NM= 3

END IF

DO 103 N= I,NM

IF (NM.EQ.5) THEN

IF (NE.EQ.I.AND.N.EQ.I) GOTO 103

IF (NE.EQ.NESURF(4).AND.N.EQ.5) GOTO 103

SUM= SUM+SC2 (N) *TEMP (C44 (ECL (NE, 2 ), 14-N) )

ELSE IF (NM. EQ. 3 ) THEN

IF (CSURF(4,NE,N).EQ.I)GOTO 103

IF (CSURF(4,NE,N).EQ.NXP)GOTO 103

SUM= SUM+SC (N) *TEMP (CSURF (4, NE, N) )



ENDIF
103 CONTINUE

IF (NM.EQ.3)THEN
QFLOW=QFLOW+SURFL(4,NE)/6.*RINV*SUM

ELSE
QFLOW=QFLOW+SURFL(4,NE)/90.*RINV*SUM

ENDIF
IF (ITYPE.EQ.I) QFLOW=QFLOW-SURFL(4,NE)*RINV

102 CONTINUE
VELBOT=3.*QFLOW/(3.-DXMIN)

C PRESSURECORRECTIONITERATION/CONVERGENCELOOP

DO200 ITPRESS=I,i000

IF (IMODE.EQ.I)WRITE(6,1031)ITPRESS

C VELOCITY/PRESSUREITERATION/CALCULATIONLOOP

DO300 ITVEL= I,I000

IF (IMODE.EQ.I)WRITE(6,1032)ITVEL

C Time step check and adjustment

VIMAX= VEL(I,I)

V2MAX= VEL(I,2)

DO 302 N= I,NGNODE

IF (ABS(VEL(N,I)).GT.VIMAX) VIMAX: ABS(VEL(N,I))

IF (ABS(VEL(N,2)).GT.V2MAX) V2MAX= ABS(VEL(N,2))

DO 302 I= 1,2

PREV(N,I)= VEL(N,I)

302 CONTINUE

IF (VIMAX.LE.I.0E-6.AND.V2MAX.LE.I.0E-6) GOTO 303

DELTLIM= I./(V2MAX/DYMIN+VIMAX/DXMIN)

IF (DELTLIM.LT.DELT) DELT= DELTLIM/10.

IF (IFREEZE.EQ.I) DELT= DELTLIM

303 CONTINUE

IF (IMODE.EQ.I)WRITE(6,3927)DELT

3927 FORMAT(' DELT= ',E12.6)

C Xl and X2 component velocities solved sequentially

DO 310 I= 1,2

DO 310 NG= I,NGNODE

AMAT0= 0.

BVEC0: 0.

IF (NG.GE.2.AND.NG.LE.NXP-I.AND.I.EQ.2) THEN
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XNI= REAL(SURFNN(NG, i) )

XN2= REAL(_(NG,2) )

IF (ITYPE. EQ. 0 ) THEN

FTEMP= TEMP (NG)

ELSE

FTEMP= TEMP (NG) -i.

END IF
VEL(NG, I) = (FTEMP*RINV-VEL (NG, i) *XNI)/XN2

PREV(NG, I)= VEL (NG, I)
GOTO 310

END IF

IF (IDIRICH(NG).EQ.I) THEN

IF (I.EQ.2) THEN
IF (NG. GE. NGNODE-NXP+ 2.AND. NG. LE. NGNODE- 1 )

VEL(NG, I)= VELBOT

ELSE

VEL(NG, I)= 0.
END IF

ELSE

VEL (NG, I)= 0.
END IF

PREV(NG, I)= VEL(NG, I)
GOTO 310

END IF

THEN

C S_tion of contributions from element to global domain

DO 320 NNE= I,NCE(NG)

NE= CE(NG,NNE)

DO 301 N= I,NLNQ

301 IF (CQ(NE,N).EQ.NG)
STOP

305 CONTINUE

GOTO 305

VRESID=- 0.

DO 321 M= I,NLNQ
MNMI= 0.

DO 322 GAM= I,NLNQ

DO 322 J= 1,2

322 MNMI=MNMI+EB (NE, N, GAM, M, J) *VEL0 (CQ (NE, GAM) ,J)

321 VRESID= VRESID+VEL0(CQ(NE, M),I)*

* (EA(NE, N,M) -DELT*FT0* (MNMI+EC(NE, N,M) ))

323

QTERM= 0.

DO 323 M= I,NLNQ
DO 323 J= 1,2

VAVG= FT0*VEL0 (CQ (NE, M), J) +FTI*PREV (CQ (NE, M), J)

QTERM= QTERM+EQ(NE,N, J,M, I)*VAVG
CONTINUE

MN3= 0.

IF (ECL(NE, I).EQ.0) THEN

DO 324 M= I,NLNL

324 MN3=MN3+ED(ECL(NE,2),N,M,I)*PDYN(CL(ECL(NE,2),M))

ELSE IF (ECL(NE, I).EQ.I) THEN

DO 350 M= I,NLNS

350 MN3=MN3+EDLQ(ECL(NE,2),N,M,I)*PDYN(CLLQ(ECL(NE,2),M))
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351

ELSE IF (ECL(NE, I).EQ.2) THEN

DO 351 _= I,NI/qC

MN3=MN3+EDQ(ECL(NE,2),N,M,I)*PDYN(CLQ(ECL(NE,2),M))

END IF

MN4= 0.

IF (ECL(NE, I).EQ.0) THEN

DO 325 M= 1,9

TAVG= FT0*TEMP0 (CQ (NE, M) )+FTI*TEMP (CQ (NE, M) )

325 MN4=MN4+ RA/PR*ACCEL(I) *EA(NE,N,M) *TAVG

ELSE IF (ECL(NE, I).EQ.I) THEN

DO 327 M= 1,15

TAVG= FT0*TEMP0 (C24 (ECL (NE, 2 ), M) )+FTI*TEMP (C24 (ECL (NE, 2 ), M) )

327 MN4=MN4+ RA/PR*ACCEL(I)*EA24V(ECL(NE,2),N,M)*TAVG

ELSE IF (ECL(NE, I).EQ.2) THEN

DO 328 M= 1,25

TAVG= FT0*TEMP0 (C44 (ECL (NE, 2 ), M) )+FTI*TEMP (C44 (ECL (NE, 2), M) )

328 MN4 =MN4+ RA/PR*ACCEL (I) *EA44V (ECL (NE, 2 ), N, M) *TAVG

END IF

BVEC0= BVEC0+VRESID- DELT*(QTERM+MN3-MN4)

DO 320 M= I,NLNQ

MG: CQ(NE,M)

326

MNMI= 0.

DO 326 GAM= I,NLNQ

DO 326 J= 1,2

MNMI =MNMI+EB (NE, N, GAM, M, J) *PREV (CQ (NE, GAM), J)

IF (MG.EQ.NG) THEN

AMAT0= AMAT0+

* EA(NE,N,M)+FTI*DELT*(MNMI+EC(NE,N,M))

ELSE

BVEC0= BVEC0-(EA(NE,N,M)+FTI*DELT*(MNMI+EC(NE,N,M)))*

* PREV(MG, I)

END IF

320 CONTINUE

C SURFACE 4 NEUMANCONDITION FOR XI-COMPONENT VELOCITY

C Marangoni effect applied on upper free surface, i.e.,

C stress proportional to temperature gradient.

tangential

334

335

336

IF (NG.LE.NXP.AND. I.EQ.I) THEN

DO 330 NNE= I,NCES(NG)

NE= CES (NG, NNE)

DCOEFF= DELT*SURFL(4,NE) *MA/PR ' Vol tens form

IF (NE.EQ.I.OR.NE.EQ.NESURF(4)) THEN

DO 334 N= 1,5

IF (C44(ECL(NE,2),I4-N).EQ.NG) GOTO 335

STOP

CONTINUE

SM= 0.

DO 336 M= 1,25

SM= SM+SAQ2 (ECL (NE, 2 ), N, M) *TEMP (C44 (ECL (NE, 2 ), M) )

ELSE
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DO 331 N= 1,3

331 IF (CSURF(4,NE,N) .EQ.NG) GOTO 332

STOP

332 CONTINUE

SM= 0.

DO 333 M= I,NI/qQ

333 SM= SM+SAQ(NE,N,M) *TEMP(CQ(NE,M) )

END IF
BVEC0= BVEC0-DCOEFF* SM

330 CONTINUE
END IF

VEL (NG, I)= .5* (BVEC0/AMAT0-PREV (NG, I ))+PREV (NG, I )

310 CONTINUE

VRMSTOT= 0.

VRMSERR= 0.

DO 340 NG= i,NGNODE

DO 340 I= 1,2

VRMSTOT= VRMSTOT+PREV(NG, I)*PREV(NG, I)

ERR= VEL(NG, I) -PREV(NG, I)

VRMSERR= VRMSERR+ERR* ERR

PREV(NG, I) = VEL(NG, I)

340 CONTINUE

IF (VRMSTOT.NE. 0. ) THEN
FVRMS= SQRT (VRMSERR/VRMSTOT)

ELSE

FVRMS= 1.

END IF

IF (IMODE.EQ.I) THEN

WRITE(6,3941)FVRMS,ABS(FVRMS-FVRMS0)
WRITE(6,1021)

WRITE(6,1022)(VEL(PNODE(N),I),N= 1,36)

WRITE(6,1023)

WRITE(6,1022)(VEL(PNODE(N),2),N= 1,36)

END IF

3941 FORMAT(' FVRMS= ',E12.6,' ABS(FVRMS-FVRMS0)= ',E12.6)

IF (ICONV. EQ. 0) THEN

IF (FirRMS. LE. VTOL. OR. ABS (FVRMS-FVRMS0). LE. VTOL/10. ) GOTO 201

ELSE

IF (FVRMS.LE.VTOL) GOTO 201
END IF

FVRMS0= FVRMS

300 CONTINUE

IF (IOUT8.NE.0) WRITE(8,1033)

IF (IMODE.EQ.I) WRITE(6,1033)
STOP
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201 CONTINUE

IFREEZE= 0

202

211

DO 202 I= I,NCORNER

BVEC (I) = 0.

XVEC (I) = 0.

DP(I) = 0.

DO 202 J= I, NCORNER

AMAT (I, J) = 0.

CONTINUE

DO 210 NE= I,NELEMENT

IF (ECL(NE, I).EQ.0) THEN

NLN= 4

ELSE IF (ECL(NE, I).EQ.I) THEN

NLN-- NLNS

ELSE IF (ECL(NE, I).EQ.2) THEN

NLN= NI/qC

END IF

DO 210 N= I,NLN

IF (ECL(NE, i) .EQ. 0) THEN

NG: CNODE(CL(ECL(NE,2),N) )

ELSE IF (ECL(NE, I).EQ.I) THEN

NG= CNODE (CLLQ (ECL (N-E,2 ), N) )

ELSE IF (ECL(NE, I).EQ.2) THEN

NG= CNODE(CLQ(ECL(NE,2),N))

END IF

P2N= 0.

DO 211 M= I,NLNQ

DO 211 I= 1,2

IF (ECL(NE, I).EQ.0) THEN

P2N= P2N+EF (ECL (NE, 2 ), N, M, I )*VEL (CQ (NE, M), I )

ELSE IF (ECL(NE, I).EQ.I) THEN

P2N= P2N+EFLQ (ECL (NE, 2 ), N, M, I )*VEL (CQ (NE, M), I )

ELSE IF (ECL(NE, I).EQ.2) THEN

P2N: P2N+EFQ (ECL (NE, 2) ,N,M, I) *VEL(CQ (NE,M), I)

END IF

CONTINUE

BVEC (NG) : BVEC (NG) -P2N/DELT

DO 210 M= I,NLN

IF (ECL(NE, I).EQ.0) THEN

MG= CNODE(CL(ECL(NE,2) ,M) )

AMAT(NG,MG) = AMAT(NG,MG)+EE(ECL(NE,2),N,M)

ELSE IF (ECL(NE, I).EQ.I) THEN

MG= CNODE(CLLQ(ECL(NE,2),M) )

AMAT (NG, MG) = AMAT (NG, MG) +EELQ (ECL (NE, 2 ), N, M)

ELSE IF (ECL(NE, I).EQ.2) THEN

MG: CNODE (CLQ (ECL (NE, 2 ), M) )

AMAT (NG, MG) = AMAT (NG, MG) +EEQ (ECL (NE, 2 ),N,M)

END IF
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210 CONTINUE

C DIRICHLET BOUNDARY CONDITIONS

DO 220 KK= 1,2

IF (KK.EQ.I) N= 1

IF (KK.EQ.2) N= CNODE(NXP)
BVF_ (N) = 0.

DO 220 K= I,NCORNER

IF (K.EQ.N) THEN
AMAT (N, K) = i.

ELSE

AMAT (N, K) = 0.

END IF
220 CONTINUE

C MATRIX SOLUTION VIA GAUSS SUBSTITUTION

CALL GAUSS (NCORNER)

DO 222 N= I,NCORNER

DP (N) = XVEC (N)
222 CONTINUE

IF (IMODE.EQ.I) THEN

WRITE(6,5924)FPRMS, FPRMS
WRITE(6,1024)

WRITE(6,1022)(DP(CNODE(PNODE(N))),N=l,36)
END IF

C VELOCITY CORRECTION BASED ON PRESSURE CORRECTION

C Establishes new initial velocity values for next velocity iteration.

207 CONTINUE

DO 231 ITV= 1,500

232

DO 232 NG= I,NGNODE

DO 232 I= 1,2

PREV(NG, I)= DVEL(NG, I)

DO 230 I= 1,2
DO 230 NG= I,NGNODE

IF (IDIRICH(NG).EQ.I) GOTO 230
AMAT0= 0.

BVEC0= 0.

DO 240 NNE= I,NCE(NG)

244

245

NE= CE (NG, NNE)

DO 244 N= I,NLNQ

IF (CQ(NE,N).EQ.NG) GOTO 245
STOP

CONTINUE
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241

242

243

SM_ 0 °

IF (ECL(NE, I).EQ.0) THEN

DO 241 M= 1,4

SM= SM+ED(ECL(NE, 2) ,N,M, I) *DP (CNODE(CL(ECL(NE, 2) ,M) ) )

ELSE IF (ECL(NE, I).EQ.I) THEN

DO 242 M= I,NLNS

SM= SM+EDLQ (ECL (NE, 2) ,N,M, I) *DP (CNODE (CLLQ (ECL (NE, 2) ,M) ) )

ELSE IF (ECL(NE, I).EQ.2) THEN

DO 243 M= I,NI/qC

SM= SM+EDQ(ECL(NE, 2),N,M, I)*DP (CNODE(CLQ (ECL (NE, 2) ,M) ) )

END IF

BVEC0= BVEC0- DELT*SM

240

DO 240 M= I,NLNQ

MG= CQ (NE, M)

IF (MG. EQ. NG) THEN

AMAT0= AMAT0+ EA(NE,N,M)

ELSE

BVEC0= BVEC0- EA(NE,N,M)*PREV(MG, I)

END IF

CONTINUE

DVEL (NG, I) = .5* (BVEC0/AMAT0-PREV (NG, I) )+PREV (NG, I)

230 CONTINUE

VRMSTOT= 0.

VRMSERR= 0.

VRMSERR2 = 0.

DO 233 NG= I,NGNODE

DO 233 I= 1,2

VRMSTOT= VRMSTOT+VEL(NG, I) *VEL(NG, I)

VRMSERR= VRMSERR+DVEL (NG, I) *DVEL (NG, I)

VRMS RR2=VRMSERR2+PREV (NG, I) *PREV (NG, I)

233 CONTINUE

IF (VRMSERB2 .NE. 0. ) THEN

FVRMS=ABS ((SQRT (VRMSERR) -SQRT (VRMSERR2) )/SQRT (VRMSERR2) )

ELSE

FVRMS-- i.

END IF

IF (IMODE.EQ.I) THEN

WRITE(6,3941)FVRMS,FVRMS

WRITE(6,1021)

WRITE(6,1022)(DVEL(PNODE(N),I),N= 1,36)

WRITE(6,1023)

WRITE(6,1022)(DVEL(PNODE(N),2),N= 1,36)

END IF

IF (FVRMS.LE.VTOL) GOTO 234

231 CONTINUE
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234 CONTINUE

270

DO 270 I= I,NCORNER

BVEC (I) = 0.

XVEC (I) = 0.

DP (I) = 0.

DO 270 J= I,NCORNER

AMAT (I, J) = 0.

CONTINUE

DO 280 NE= I,NELEMENT

IF (ECL(NE, I).EQ.0) THEN

NI/_= 4

ELSE IF (ECL(NE, I).EQ.I)

NLN= NLNS

ELSE IF (ECL(NE, I).EQ.2)

NLN= NLNC

END IF

THEN

THEN

DO 280 N= I,NLN

IF (ECL(NE, I).EQ.0) THEN

NG= CNODE (CL (ECL(NE, 2) ,N) )

ELSE IF (ECL(NE, I).EQ.I) THEN

NG= CNODE(CLLQ(ECL(NE,2),N) )

ELSE IF (ECL(NE, I).EQ.2) THEN

NG= CNODE (CLQ (ECL (NE, 2 ), N) )

END IF

281

SMI= 0.

DO 281 M= I,NLNQ

DO 281 I= 1,2

IF (ECL(NE, I).EQ.0) THEN

SMI= SMI+ EF(ECL (NE, 2) ,N,M, I) *VEL(CQ(NE,M), I)

ELSE IF (ECL(NE, I).EQ.I) THEN

SMI= SMI+ EFLQ(ECL(NE,2) ,N,M, I) *VEL(CQ(NE, M), I)

ELSE IF (ECL(NE, I).EQ.2) THEN

SMI= SMI+ EFQ (ECL (NE, 2 ), N, M, I) *VEL (CQ (NE, M), I)

END IF

CONTINUE

BVEC (NG) = BVEC (NG) - SMI/DELT

SUM= 0.

DO 282 GAM= I,NLNQ

DO 282 J= 1,2

SMI= 0.

DO 283 M= I,NLNQ

DO 283 I= 1,2

IF (ECL(NE, I).EQ.0) THEN

SMI= SMI+ EG(ECL(NE,2) ,N,M,J, GAM, I)*DVEL(CQ(NE,M) ,I)

ELSE IF (ECL(NE, I).EQ.I) THEN

SMI= SMI+ EGLQ(ECL(NE, 2) ,N,M,J, GAM, I) *DVEL(CQ(NE,M), I)

ELSE IF (ECL(NE, I).EQ.2) THEN

SMI= SMI+ EGQ(ECL(NE,2),N,M,J, GAM, I)*DVEL(CQ(NE,M),I)

END IF

283 CONTINUE

282 SUM= SUM+ SMI* (2.*VEL(CQ(NE, GAM) ,J)+DVEL(CQ(NE, GAM) ,J) )
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BVEC(NG)= BVEC(NG)+ SUM

SUM= 0.

DO 284 M= I,NLNQ

DO 284 J= 1,2

SGI= 0.

DO 285 GAM= I,NLNQ

DO 285 I= 1,2

IF (ECL(NE, I).EQ.0) THEN

SGI= SGI+ EH (ECL (NE, 2 ), N, M, GAM, I, J) *DVEL (CQ (NE, GAM), I)

ELSE IF (ECL(NE, I).EQ.I) THEN

SGI= SGI+ EHLQ(ECL(NE,2),N,M, GAM, I,J)*DVEL(CQ(NE,GAM), I)

ELSE IF (ECL(NE, I).EQ.2) THEN

SGI= SGI+ EHQ(ECL(NE, 2) ,N,M, GAM, I,J) *DVEL(CQ(NE,GAM), I)

END IF

285 CONTINUE

284 SUM= SUM+ SGI*VEL(CQ(NE, M),J)

BVEC(NG)= BVEC(NG)+ SUM

DO 280 M= I,NLN

IF (ECL(NE, I).EQ.0) THEN

MG= CNODE(CL(ECL(NE,2),M))

AMAT(NG, MG)= AMAT(NG,MG)+EE(ECL(NE,2),N,M)

ELSE IF (ECL(NE, I).EQ.I) THEN

MG= CNODE(CLLQ(ECL(NE,2),M))

AMAT(NG,MG)= AMAT(NG,MG)+EELQ(ECL(NE,2),N,M)

ELSE IF (ECL(NE, I).EQ.2) THEN

MG= CNODE(CLQ(ECL(NE,2),M))

AMAT(NG,MG)= AMAT(NG,MG)+EEQ(ECL(NE,2),N,M)

END IF

280 CONTINI/E

C Pressure Correction Dirichlet Condition

DO 290 KK= 1,2

IF (KK.EQ.I) N: 1

IF (KK.EQ.2) N: CNODE(NXP)

BVEC (N) : 0.

DO 290 K= I,NCORNER

IF (K.EQ.N) THEN

AMAT (N, K) : I.

ELSE

AMAT (N, K) = 0.

END IF

290 CONTINUE

C MATRIX SOLUTION VIA GAUSS SUBSTITUTION

CALL GAUSS(NCORNER)

C Error and convergence tolerance calculation

PRMSERR= 0.

PRMSTOT= 0.

DO 292 N= I,NCORNER

PRMSTOT= PRMSTOT+ (PDYN (GNODE (N)) -PDYN (NGNODE)) *
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> (PDYN (GNODE (N)) -PDYN (NGNODE))

PRMSERR= PRMSERR+XVEC (N) *XVEC (N)

PDYN (GNODE (N)) = PDYN (GNODE (N)) +XVEC (N)

292 CONTINUE

293

VRMSERR= 0.

VRMSTOT= 0.

DO 293 N= I,NGNODE

DO 293 I= 1,2

VRMSERR= VRMSERR+DVEL (N, I) *DVEL (N, I)

VRMSTOT= VRMSTOT+VEL (N, I) *VEL (N, I)

VEL(N, I) = DVEL (N, I) +VEL (N, I)

CONTINUE

IF (VRMSTOT.NE.0.) THEN

FVRMS2= SQRT (VRMSERR/VRMSTOT)

ELSE

FVRMS2= i.

END IF

IF (PRMSTOT.NE. 0. ) THEN

FPRMS= SQRT (PRMSERR/PRMSTOT)

ELSE

FPRMS= I.

END IF

5924

5925

IF (IMODE.EQ. i) WRITE(6,5924)FPRMS,ABS(FPRMS-FPRMS0)

FORMAT(' FPRMS= °,E12.6, ' ABS(FPRMS-FPRMS0)= ',E12.6)

IF (IMODE.EQ.I) WRITE(6,5925)FVRMS2,ABS(FVRMS2-FVRMS20)

FORMAT(' FVRMS2= ',E12.6,' ABS(FVRMS2-FVRMS20)= ',E12.6)

IF (FPRMS.LE.PTOL.OR.ABS(FPRMS-FPRMS0) .LE.PTOL) GOTO I01

IF (FVRMS2.LE.VTOL) GOTO i01

FPRMS0= FPRMS

FVRMS20= FVRMS2

IF (IMODE. EQ. I) THEN

WRITE (6, 1024)

WRITE(6, 1022) (PDYN(PNODE(N)) -PDYN(NGNODE) ,N= I, 36)

END IF

200 CONTINUE

IF (IMODE.EQ.I} WRITE(6,1034)

IF (IOUT8.NE.0) WRITE(8, 1034)

STOP

C TEMPERATURE SOLUTION

101 CONTINUE

104

DO 104 NG= I,NGNODE2

PREV(NG, I)= TEMP(NG)

PREV(NG,2)= TEMP(NG)

DO 105 ITT= i, I000
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DO 106 I_G= I,NGNODE2

IF (IDIRICH(NG) .EQ. i)

AMAT 0 = 0.

BVEC0= 0.

GOTO 106

DO ii0 NNE= I,NCE(NG)

108

109

hiE= CE (NG, NNE)

IF (ECL(NE, I).EQ.0) THEN

NM= NLNQ

ELSE IF (ECL(NE, I).EQ.I) THEN

NM= 15

ELSE IF (ECL(NE, I).EQ.2) THEN

NM= 25

END IF

DO 108 N= I,NM

IF (ECL(NE, I).EQ.0) THEN

IF (CQ(NE,N).EQ.NG) GOT0 109

ELSE IF (ECL(NE, I).EQ.I) THEN

IF (C24 (ECL (NE, 2), N). EQ.NG)

ELSE IF (ECL(NE, I).EQ.2) THEN

IF (C44 (ECL (NE, 2), N). EQ.NG)

END IF

CONTINUE

STOP

CONTINUE

GOTO 109

GOTO 109

IF (ITIME.EQ.I.AND. ITTEMP.EQ.I.AND. ISSTEMP.EQ.I)

IF (ITMEN.EQ.I) THEN

GOTO 114

ELSE

GOTO 9998

END IF

END IF

THEN

TRESID= 0.

DO iii M= I,NM

MNMI= 0.

IF (NM.EQ.9) THEN

DO 112 GAM= I,NI_NQ

DO 112 J= 1,2

112 MNMI=MNMI+EB (NE, N, GAM, M, J) *VEL0 (CQ (NE, GAM) ,J)

TRESID= TRESID+TEMP0 (CQ (NE, M) ) *

• (EA (NE,N, M) -DELT*FT0* (MNMI+EC (NE,N,M)/PR) )

ELSE IF (NM.EQ.15) THEN

DO 115 GAM= I,NLNQ

DO 115 J= 1,2

115 MNMI:MNMI+EB24 (ECL (NE, 2) ,N, GAM, M, J) *VEL0 (CQ (NE, GAM) ,J)

TRESID: TRESID+TEMP0 (C24 (ECL (hiE,2 ), M) )*

• (F_A24T (ECL (NE, 2 ),N,M) -

• DELT*FT0* (MNMI+EC24 (ECL (NE, 2) ,N,M)/PR) )

ELSE

DO 116 GAM= I,NLNQ

DO 116 J= 1,2

116 MNMI:MNMI+EB44 (ECL (NE, 2),N, GAM, M, J)*VEL0 (CQ (NE, GAM),J)

TRESID: TRESID+TEMP0 (C44 (ECL (NE, 2 ), M) )*

• (EA44T (ECL (NE, 2) ,N,M) -
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* DELT*FT0* (MNMI+EC44 (ECL (NE, 2 ), N, M)/PR) )

END IF

Iii CONTINUE

BVEC0= BVEC0+TRESID

114 CONTINUE

DO Ii0 M= I,NM

MNMI= 0.

IF (NM.EQ.9) THEN

MG= CQ (NE, M)

DO 113 GAM= I,NLNQ

DO 113 J= 1,2

113 MNMI=MNMI+EB (NE, N, GAM, M, J)*VEL (CQ (NE, GAM),J)

ELSE IF (NM.EQ.15) THEN

MG= C24 (ECL (NE, 2), M)

DO 117 GAM= I,NLNQ

DO 117 J= 1,2

117 MNMI=MNMI+EB24 (ECL (NE, 2) ,N, GAM, M, J) *VEL (CQ (NE, GAM) ,J)

ELSE

MG= C44 (ECL (NE, 2), M)

DO 118 GAM= I,NLNQ

DO 118 J= 1,2

118 MNMI=MNMI+EB44 (ECL (NE, 2) ,N, GAM, M, J)*VEL (CQ (NE, GAM) ,J)

END IF
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IF (ITIME.EQ.I.AND.ITTEMP.EQ.I.AND.ISSTEMP.EQ.I)

IF (NG.EQ.MG) THEN

IF (NM.EQ.9) THEN

AMAT0= AMAT0+EC(NE,N,M)/PR

ELSE IF (NM.EQ.15) THEN

AMAT0= AMAT0+EC24(ECL(NE,2),N,M)/PR

ELSE

AMAT0=AMAT0+EC44(ECL(NE,2),N,M)/PR

END IF

ELSE

IF (NM.EQ.9) THEN

BVEC0= BVEC0-EC(NE,N,M)/PR*PREV(MG, I)

ELSE IF (NM.EQ.15) THEN

BVEC0= BVEC0-EC24(ECL(NE,2),N,M)/PR*PREV(MG, I)

ELSE

BVEC0= BVEC0-EC44(ECL(NE,2),N,M)/PR*PREV(MG, I)

END IF

END IF

ELSE

IF (NG.EQ.MG) THEN

IF (NM.EQ.9) THEN

AMAT0= AMAT0+EA(NE,N,M)+

FTI*DELT*(MNMI+EC(NE,N,M)/PR)

ELSE IF (NM.EQ. 15) THEN

AMAT0= AMAT0+EA24T(ECL(NE,2),N,M)+

FTI*DELT*(MNMI+EC24(ECL(NE,2),N,M)/PR)

ELSE

AMAT0= AMAT0+EA44T(ECL(NE,2),N,M)+

FTI*DELT*(MNMI+EC44(ECL(NE,2),N,M)/PR)

END IF

THEN



ELSE
IF (NM.EQ.9)THEN

BVEC0=BVEC0-PREV(MG,i) * (EA(NE,N,M)+
• FTI*DELT*(MNMI+EC(NE,N,M)/PR))

ELSEIF (NM.EQ.15)THEN
BVEC0=BVEC0-PREV(MG,i) * (F_A24T(ECL(NE,2) ,N,M)+

• FTI*DELT*(MNMI+EC24(ECL(NE,2) ,N,M)/PR))
ELSE

BVEC0=BVEC0-PREV(MG,I) * (EA44T(ECL(NE,2), N,M)+
• FTI*DELT*(MNMI+EC44(ECL(NE,2) ,N,M)/PR))

ENDIF
ENDIF
ENDIF

ii0 CONTINUE

C TEMPERATUREBOUNDARYCONDITIONS

C MIXEDTEMPERATUREBCFORSURFACE4

124

125

IF ( (NG.LE.NXP).OR.(NG.GE.NGNODE+I.AND.NG.LE.NGNODE+4) )
IF (NG.LE.NXP)THEN

NP: NCES(NG)
ELSE

NP=1
ENDIF
DO120 NNE=I,NP

IF (NG.LE.NXP)THEN
NE: CES(NG,NNE)

ELSEIF (NG.LE.NGNODE+2)THEN
NE=1

ELSE
NE=NESURF(4)

ENDIF
IF (NE.EQ.I.OR.NE.EQ.NESURF(4))THEN

DO124 N= 1,5
IF (C44(ECL(NE,2),I4-N).EQ.NG)GOTO125

STOP
CONTINUE

IF (ITIME.EQ.I.AND.ITTEMP.EQ.I.AND.ISSTEMP.EQ.I)THEN
DCOEFF=-i. *BI/PR*SURFL(4,NE)/5670.

DCOEFF2= DCOEFF
IF (ITYPE.EQ.I)

> BVEC0=BVEC0+BI/PR*SUBFL(4,NE)*SC2(N)/ 90.
ELSE

DCOEFF= -i. *BI/PR*SURFL (4, NE)/5670. *DELT*FTI

DCOEFF2= -i. *BI/PR*SURFL (4 ,NE)/5670. *DELT*FT0

IF (ITYPE. EQ. i)

> BVECO=BVECO+BI/PR*SURFL (4, NE) *SC2 (N)/90. *DELT

END IF

CON= 0.

DO 126 M= 1,5

MG: C44 (ECL (NE, 2 ) ,14-M)

IF (MG.EQ.I.OR.MG.EQ.NXP) GOTO 126

CON= CON+DCOEFF2*SB2 (N,M) *TEMPO (MG)

IF (MG.EQ.NG) THEN

AMAT0= AMAT0-DCOEFF*SB2 (N, M)

ELSE

THEN

179



BVEC0= BVEC0+DCOEFF*SB2 (N, M) *PREV(MG, i)

END IF

126 CONTINUE

ELSE

DO 121 N= 1,3

121 IF (CSURF(4,NE,N) .EQ.NG) GOTO 122

STOP

122 CONTINUE

IF (ITIME.EQ.I.AND. ITTEMP.EQ.I.AND. ISSTEMP.EQ.I) THEN

DCOEFF= -i. *BI/PR*SURFL (4, NE)/30

DCOEFF2 = DCOEFF

IF (ITYPE.EQ. I)BVECO=BVECO+BI/PR*SURFL(4,NE) *SC(N)/6.

ELSE

DCOEFF= -I. *BI/PR*SURFL (4,NE)/30. *DELT*FTI

DCOEFF2= -i. *BI/PR*SURFL (4, NE)/30. *DELT*FT0

IF (ITYPE. EQ. i) BVEC0=BVEC0+BI/PR*SURFL (4, NE) *SC (N)/6. *DELT

END IF

CON= 0.

DO 123 M= 1,3

MG= CSURF (4, NE, M)

IF (MG.EQ.I.OR.MG.EQ.NXP) GOTO 123

CON= CON+DCOEFF2*SB (N, M) *TI_4P0 (MG)

IF (MG.EQ.NG) THEN

AMAT0= AMAT0-DCOEFF*SB (N, M)

ELSE

BVEC0= BVEC0+DCOEFF*SB (N, M) *PREV (MG, 1 )

END IF

123 CONTINUE

END IF

IF (ITIME.NE. 1 .OR. ITTEMP.NE. 1 .OR. ISSTEMP.NE. i)

BVEC0+CON> BVEC0=

120 CONTINUE

END IF

TEMP (NG) = .3* (BVEC0/AMAT0-PREV(NG, i) )+PREV(NG, I)

106 CONTINUE

9215

TOTV: 0.

VERR= 0.

DO 9215 NG= I,NGNODE2

TOTV= TOTV+PREV(NG, I) *PREV(NG, i)

ERR= TEMP(NG)-PREV(NG, i)
VERR= VERR+ERR*ERR

PREV(NG, i) = TEMP(NG)

CONTINUE

IF (TOTV.NE. 0. ) THEN

FERR= SQRT (VERR/TOTV)

ELSE

FERR= i.

END IF

1080

IF (IMODE.EQ.I) THEN

WRITE(6,1080) FERR

WRITE(6,1022)(TEMP(PNODE(N)),N= 1,36)

END IF

FORMAT(' TEMP SOLUTION LOOP/ ERROR= ',E12.6)
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IF (FERR.LE.TTOL) GOT0 119

105 CONTINUE

119 CONTINUE

TOTV= 0.

VERR= 0.

ERRAVG= 0.

ERRMIN= ABS (TEMP (2 ) -PREV (2,2 ) )

ERRMAX= ERRMIN

DO 150 NG= I,NGNODE2

TOTV= TOq_+PREV(NG, 2) *PREV(NG, 2)

ERR: TI94P (NG) -PRE_ (NG, 2 )

IF (ERR.NE. 0. ) THEN

IF (ABS(ERR).LT.ERRMIN)ERRMIN= ABS(ERR)

IF (ABS(ERR).GT.ERRMAX)F2JtMAX= ABS(ERR)

END IF

ERRAVG= ERRAVG+ ABS(ERR)

VERR= VERR+ERR*ERR

150 CONTINUE

ERRAVG= ERRAVG/REAL (NGNODE2)

IF (TOTV.NE.0.) THEN

FERR= SQRT (VERR/TOTV)

ELSE

FERR-- i.

END IF

IF (IMODE.EQ.I) THEN

WRITE(6,1081) FERR

WRITE(6,1025)

WRITE(6,1022)(TEMP(PNODE(N)),N= 1,36)

END IF

1081 FORMAT(' TEMP/TIME STEP ERROR= ',E12.6)

IF (ITIME. EQ. i. AND. ITTEMP. EQ. i)

IF (FERR. GT. TTOL) THEN

GOTO i01

ELSE

GOTO 9998

END IF

END IF

THEN

IF (FERR. LE.TTOL) GOT0 901

I00 CONTINUE

IF (I0UT8.NE.0) WRITE(8,1043)

IF (IMODE.EQ.I) WRITE(6,1043)

STOP

C TIME STEP OUTPUT AND INITIALIZATION

901 CONTINUE

TIME= TIME+DELT
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IF (IOUT8 .GE. 2)
WRITE (8,1030)

WRITE (8,1021)

WRITE (8, 1022)

WRITE (8,1023)

WRITE (8, 1022)

WRITE (8,1024)

WRITE (8,1022 )

WRITE (8,1025 )

WRITE (8, 1022)
END IF

IF (IMODE. EQ. I)

WRITE (6,1030)

WRITE (6,1021)
WRITE (6, 1022)

WRITE (6,1023)

WRITE (6, 1022)

WRITE (6,1024 )

WRITE (6,1022 )

WRITE (6,1025)

WRITE (6, 1022)
END IF

THEN

ITIME, TIME

(VEL(PNODE (N), i) ,N= I,36)

(VEL (PNODE (N), 2), N= 1,36)

(PDYN(PNODE(N))-PDYN(NGNODE) ,N= 1,36)

(TEMP(PNODE(N)) ,N= i, 36)

•THEN

ITIME, TIME

(VEL(PNODE (N), i) ,N= I, 36)

(VEL (PNODE (N), 2) ,N= i, 36)

(PDYN(PNODE(N))-PDYN(NGNODE) ,N= 1,36)

(TEMP(PNODE(N)) ,N= i,36)

C Check steady-state convergence and initialize old values for

C next time step

9998 CONTINUE

182

910

911

TSSCON= 0.

PSSCON= 0.

VSSCON= 0.

TSUM= 0.

PSUM= 0.

VSUM= 0.

DO 910 I= I,NGNODE

PSUM= PSUM+ (PDYN0 (I) -PDYN0 (NGNODE)) * (PDYN0 (I) -PDYN0 (NGNODE))
PSSCON= PSSCON+ (PDYN (I)-PDYN0 (I ))* (PDYN (I )-PDYN0 (I))

PDYN0 (I) = PDYN(I)

DO 910 J= 1,2

VSUM= VSUM+VEL0 (I,J) *VEL0 (I,J)

ERR= VEL (I, J) -VEL0 (I,J)

VSSCON= VSSCON+ERR*ERR

VEL0 (I, J) = VEL(I, J)
CONTINUE

DO 911 I= I,NGNODE2

TSUM= TSUM+TEMP0 (I)*TEMPO (I)

TSSCON= TSSCON+ (TEMP (I) -TEMPO (I)) * (TEMP (I) -TE_4P0 (I))

TEMP0(I)= TEMP (I)

CONTINUE

IF (TSUM.NE.0.) THEN

TSSCON= SQRT (TSSCON/TSUM)
ELSE _

TSSCON= I.

END IF

IF (PSUM.NE. 0. ) THEN
PSSCON= SQRT (PSSCON/PSUM)

ELSE

PSSCON= i.



END IF

IF (VSUM.NE.0.) THEN

VSSCON: SQRT(VSSCON/VSUM)

ELSE

VSSCON= I.

END IF

IF (IOUT8.GE.2) WRITE(8,1036) VSSCON, PSSCON, TSSCON

IF (IMODE.EQ.I) WRITE(6,1036) VSSCON, PSSCON, TSSCON

IF (MA.GE.MAIN.AND.RINV.GE.I./REVAPIN)

IF (TSSCON.LE.SSTOL.AND.ITIME.GE.5)

IF (ITMEN.EQ.I) THEN

IF (TSSCON.LE.SSTOL.AND. ITIME.GE.200)

ELSE

IF (TSSCON.LE.SSTOL.AND. ITIME.GE.30)

END IF

END IF

THEN

ICONV= 1

ITCONV= 1

ITCONV= 1

C Intermittent update and continuation check

IF (IMODE.EQ.2) THEN

IF (QUETYPE.EQ. 'HUGE3') THEN

OPEN (UNIT=2, FILE= 'huge3, tst ', STATUS=' OLD' )

OPEN (UNIT=3, FILE= 'huge3, dat ', STATUS=' UNKNOWN' )

OPEN (UNIT=l, FILE= 'huge3, ts2 ',STATUS=' UNKNOWN' )

ELSE IF (QUETYPE.EQ. 'H_GE2' ) THEN

OPEN (UNIT=2, FILE=' huge2, tst ', STATUS=' OLD' )

OPEN (UNIT=3, FILE=' huge2, dat ', STATUS=' UNKNOWN' )

OPEN (UNIT=l, FILE= 'huge2, ts2 ', STATUS=' UNKNOWN' )

ELSE IF (QUETYPE.EQ. 'LARGE4') THEN

OPEN (UNIT=2, FILE=' large4, tst ',STATUS= 'OLD' )

OPEN (UNIT=3, FILE=' large4, dat ', STATUS=' UNKNOWN' )

OPEN (UNIT=l, FILE= 'large4, ts2 ', STATUS=' UNKNOWN' )

ELSE IF (QUETYPE. EQ. 'LARGE3 ') THEN

OPEN (UNIT=2, FILE=' large3, tst ', STATUS=' OLD' )

OPEN (UNIT=3, FILE=' large3, dat', STATUS=' UNKNOWN' )

OPEN (UNIT=l, FILE=' large3, ts2 ', STATUS= 'UNKNOWN' )

ELSE IF (QUETYPE. EQ. 'LARGE2 ') THEN

OPEN (UNIT=2, FILE=' large2, tst ', STATUS=' OLD' )

OPEN (UNIT=3, FILE=' large2, dat ', STATUS=' UNKNOWN' )

OPEN (UNIT=I, FILE=' large2, ts2 ', STATUS=' UNKNOWN' )
ELSE

OPEN (UNIT=2, FILE= 'other, tst ', STATUS= 'OLD' )

OPEN (UNIT=3, FILE=' other, dat ', STATUS=' UNKNOWN' )

OPEN (UNIT=l, FILE=' other, ts2 ', STATUS=' UNKNOWN' )

END IF

RFAD(2,1003) TITLINE, IGO

CLOSE (2)

WRITE(3,3919)ITMEN, YERR

WRITE(3,1030)ITIME, TIME

WRITE(3,6391)VSSCON, PSSCON,TSSCON

WRITE(3,7391)ERRAVG

WRITE(3,7392)ERRMIN

WRITE(3,7393)ERRMAX
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7391 FORMAT(' ERRAVG=

7392 FORMAT (' ERRMIN=

7393 FORMAT ( ' ERRMAX=

WRITE (3,1021)

WRITE (3,

WRITE (3,

WRITE (3,

WRITE(3,
WRITE (3,

WRITE (3,

WRITE (3,

CLOSE (3 )

',El2.6)

' ,El2.6)

',El2.6)

1022)(VEL(PNODE(N),I),N= 1,36)

1023)

1022)(VEL(PNODE(N),2),N= 1,36)

1024)

1022)(PDYN(PNODE(N))-PDYN(NGNODE),N=

1025)

1022)(TEMP(PNODE(N)),N= 1,36)

1,36)

>

931

IF (IGO.EQ.0) THEN

IF (QUETYPE.EQ.'HUGE3') THEN

OPEN(UNIT=2,FILE='huGe3.tst',STATUS='UNKNOWN')

ELSE IF (QUETYPE.EQ.'HUGE2') THEN

OPEN(UNIT=2,FILE='huge2.tst',STATUS='NKNOWN')

ELSE IF (QUETYPE.EQ.'LARGE4 ') THEN

0PEN(UNIT=2,FILE='Iarge4.tst',STATUS='UNKNOWN')

ELSE IF (QUETYPE.EQ.'LARGE3') THEN

OPEN(UNIT=2,FILE='Iarge3.tst',STATUS='UNKNOWN')

ELSE IF (QUETYPE.EQ.'LARGE2') THEN

OPEN(UNIT=2,FILE='Iarge2.tst',STATUS='UNKNOWN')

ELSE

OPEN(UNIT=2,FILE='other.tst',STATUS='UNKNOWN')

END IF

WRITE(2, 1003) TITLINE, I

CLOSE (2)

IF (IOUTg.EQ.I) THEN

TITLINE=' MENISCUS DIM CHARACTERISTICS'

WRITE(9,1073) TITLINE, 0

DO 931 K= I,NXP

WRITE(9,1009) XSURF(K),YSTAT(K),YSURF(K),

SiTRFNN(K,I),SURFNN(K,2),SURFNT(K,I),SURFNT(K,2)

CONTINUE

END IF

GOTO 510

END IF

READ(I,1003) TITLINE, ICHK

CLOSE(l)

IF (ITCONV.EQ.I) ICHK= 1 ! Full data dump to Ul0 when t conv

IF (ICHK.EQ.I) THEN

IF (QUETYPE.EQ.'HUGE3') THEN

OPEN(UNIT=l, FILE= 'huge3, ts2', STATUS= 'UNKNOWN' )

OPEN (UNIT=I0, FILE=' chg3. dat', STATUS=' UNKNOWN' )

ELSE IF (QUETYPE. EQ. 'HUGE2 ') THEN

OPEN(UNIT=I,FILE='huge2.ts2',STATUS='UNKNOWN')

OPEN(UNIT=I0,FILE='chg2.dat',STATUS='UNKNOWN')

ELSE IF (QUETYPE.EQ.'LARGE4') THEN

OPEN(UNIT=I,FILE='Iarge4.ts2',STATUS='UNKNOWN')

OPEN(UNIT=I0,FILE='clrg4.dat',STATUS='UNKNOWN')

ELSE IF (QUETYPE.EQ.'LARGE3 °) THEN

OPEN(UNIT=I,FILE='Iarge3.ts2',STATUS='UNKNOWN')

OPEN(UNIT=I0,FILE='clrg3.dat',STATUS='UNKNOWN')

ELSE IF (QUETYPE.EQ.'LARGE2') THEN

OPEN(UNIT=I,FILE='Iarge2.ts2',STATUS='UNKNOWN')



OPEN(UNIT=I0,FILE=' clrg2 .dat' ,STATUS=' UNKNOWN' )

ELSE "

OPEN (UNIT=l, FILE=' other, ts2 ', STATUS=' UNKNOWN' )

OPEN (UNIT=I0, FILE=' coth. dat', STATUS=' UNKNOWN' )

END IF

WRITE(I,1003)TITLINE, 0

CLOSE(l)
WRITE(10,8294)QUETYPE

8294 FORMAT (AI2,28X, ', ', 19X, '0' )

WRITE (i0, 8295) ITME

WRITE(10,8296)ITIME

WRITE(10,8297)VSSCON

WRITE(10,8298)PSSCON

WRITE(10,8299)TSSCON

8295 FORMAT('Meniscus Iteration

8296 FORMAT('Time Step

8297 FORMAT('Velocity Error

8298 FORMAT('Press Error

8299 FORMAT('Ten_erature Error/SS Conv Test

WRITE(10,1072)

DO 8301 I=i,3

8301 WRITE(10,1073)TITLINE,NCONTOUR

DO 8302 I=i,3

8302 WRITE(10,1074)TITLINE,XARROW

TITLINE=' Number of top nodes

WRITE(10,1073)TITLINE, 2*NXE+I

TITLINE=' Number of global nodes

>

8341

>

>

8342

,',I20)

,',I20)

,',IPE20.4)

,',IPE20.4)

,',IPE20.4)

!

WRITE(10,1073)TITLINE,(2*NXE+I)*(2*NYE+I)

TITLINE=' MENISCUS DIM CHARACTERISTICS'

WRITE(10,1073)TITLINE, 0

DO 8341 K= I,NXP

WRITE(10,1009)XSURF(K),YSTAT(K),YSURF(K),SURFNN(K,I),

SURFNN(K,2),SURFNT(K,I),SURFNT(K,2)

CONTINUE

TITLINE: ' MOST RECENT TIME INTERVAL'

WRITE(10,1079)TITLINE, DELT

WRITE(10,6295)

CALL STREAM(NGNODE,NXP,NYE+I,2*NXP)

DO 8342 NG= I,NGNODE

IF (NG.LE.NXP) THEN

WRITE(10,6297)NG,XG(NG, I),XG(NG,2),VEL(NG, I),VEL(NG,2),

TEMP(NG),PBUB(NG),PSI(NG),PDYN(NG)-PDYN(NGNODE)

ELSE

WRITE(10,6297)NG,XG(NG, I),XG(NG,2),VEL(NG, I),VEL(NG,2),

TEMP(NG),PTOT, PSI(NG),PDYN(NG)-PDYN(NGNODE)

END IF

CONTINUE

CLOSE(10)

END IF

END IF

IF (ITCONV. EQ.I) GOTO 510

900 CONTINUE

IF (IOUTS.GE. i) WRITE(8, 1039)
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IF (IMODE.EQ.I) WRITE(6,1039)
C STOP

C RE-INITIALIZATION FOR MENISCUS CALCUI_TION

510 CONTINUE

CALL STREAM(NGNODE,NXP,NYE+I, 2*NXP)

6391 FORMAT(' VSSCON= ',E12.6,/,' PSSCON= ',E12.6,/,

> ' TSSCON= ',E12.6)

3919

520

5OO

IF

.GE.I) THEN

,3919)ITMEN, YERR

,1030)ITIME, TIME

,6391)VSSCON, PSSCON, TSSCON
,1021)

,1022)

,1023)

,1022)

,1050)
,1022)

,1024)

,1022)

,1025)

,1022)

(VEL(PNODE(N),I),N= 1,36)

(VEL(PNODE(N),2),N= 1,36)

(PSI(PNODE(N)),N= 1,36)

(PDYN(PNODE(N))-PDYN(NGNODE),N= 1,36)

(TEMP(PNODE(N)),N= 1,36)

THEN

ITMI_, YERR

ITIME, TIME

(VEL (PNODE (N) ,i) ,N= i, 36)

(VEL (PNODE (N), 2) ,N= i, 36)

(PSI(PNODE(N)),N= 1,36)

(PDYN(PNODE(N))-PDYN(NGNODE),N= 1,36)

(TEMP(PNODE(N)) ,N= 1,36)

IF (IOUT8

WRITE (8

WRITE (8
WRITE (8
WRITE (8

WRITE (8

WRITE (8

WRITE (8

WRITE (8
WRITE (8

WRITE (8

WRITE (8

_ITE (8

WRITE (8

END IF

IF (IMODE. EQ. i)

WRITE (6,3919)

WRITE (6,1030)

WRITE (6,1021)

WRITE (6, 1022)

WRITE (6,1023)
WRITE (6, 1022)

WRITE (6,1050)

WRITE (6, 1022)

WRITE (6,1024)

WRITE (6, 1022)

WRITE (6,1025)

WRITE (6, 1022)
END IF

FORMAT(/' MEN IT# = ',I6, °

(IGO.EQ.0) GOTO 503

MEN ERR= ',E12.6)

N= NGNODE-NXP

DO 520 K= I,NXP
N= N+I

TSURF (K)= DBLE(TEMP(K) )

PSURF (K) = DBLE (PDYN (K) -PDYN (NGNODE))

CONTINUE

CONTINUE

IF (IOUT8.GE.I) WRITE(8,7234)

IF (IMODE.EQ.I) WRITE(6,7234)
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7234 FORMAT(' MENISCUS ITERATION DID NOT CONVERGE')

STOP

503 CONTINUE

TITLINE= ' MOST RECENT TIME INTERVAL'

WRITE(9,1079)TITLINE,DELT

IF (IOUT9.GE.I) THEN

WRITE(9,6295)

DO 6296 NG= I,NGNODE

IF (NG.LE.NXP) THEN

WRITE(9,6297)NG,XG(NG, I),XG(NG,2),VEL(NG, I),VEL(NG,2),

> TEMP(NG),PBUB(NG),PSI(NG),PDYN(NG)-PDYN(NGNODE)

ELSE

WRITE(9,6297)NG,XG(NG, I),XG(NG,2),VEL(NG, I),VEL(NG,2),

> TEMP(NG),PTOT,PSI(NG),PDYN(NG)-PDYN(NGNODE)

END IF

6296 CONTINUE

END IF

i000

i001

1002

1003

1004

1005

1020

1021

1022

1023

1024

1050

1051

1025

1030

1031

1098

1032

1033

1034

1035

1036 FORMAT(

>

>

1037 FORMAT(

1038 FORMAT(/,

FORMAT(' Type in the name of your input file: ',$)

FORMAT(' UNIT 7 INPUT FILE: ',AI2,' UNIT 4 INPUT: ',AI2)

FORMAT(//,3(AS0,/))

FORMAT(A40, I20)

FORMAT(A40,8X, AI2)

FORMAT(A40,1PE20.4)

FORMAT(' INITIAL VEI/3CITIES,PRESSURES AND TEMPERATURES')

FORMAT(' XI-COMPONENTVELOCITY')

FORMAT(6(IX, 6(EII.5,1X),/),/)

FORMAT(' X2-COMPONENT VELOCITY')

FORMAT(' DYNAMIC PRESSURE')

FORMAT(' STREAM FUNCTION')

FORMAT(' TOTAL PRESSURE')

FORMAT(' TEMPERATURE')

FORMAT(/' ITIME= ',I12,' TIME= ',E12.6)

FORMAT( PRESS CORR ITPRESS= ',I12)

FORMAT( PRESS ITPRESS2= ',I12)

FORMAT( ITVEL= ',I12)

FORMAT( VELOCITY ITERATION LOOP DID NOT CONVERGE')

FORMAT( PRESSURE ITERATION LOOP DID NOT CONVERGE')

FORMAT( ITTEMP= ',I12)

VEL STEADY-STATE CONV ERROR (VSSCON)=

PRESS STEADY-STATE CONVERROR (PSSCON)=

TEMP STEADY-STATE CONV ERROR (TSSCON)=

PRESSURE ERROR= ',E12.6)

' TIME STEP NUMBER= ',I4)

',El2.6,/,

',E12.6,/,

',E12.6)
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1039 FORMAT(' STEADY-STATE ITERATION FAILED TO CONVERGE')

1040 FORMAT (AI2)

1041 FORMAT(/' STREAM FUNCTION' )

1042 FORMAT ( ' ITTEMP= ', I12 )

1043 FORMAT( ' TEMPERATURE ITERATION LOOP DID NOT CONVERGE' )

1070 FORMAT (AI2/AI2)

1071 FORMAT(A40,615)

1072 FORMAT(' PLOT DATA, 0')

1073 FORMAT(A40, ', ', I20)

1074 FORMAT(A40, ',',IPE20.4)

1075 FORMAT(A40, IX, I20)

6220 FORMAT (A40)

1009 FORMAT(EI2.6,6(',',EI2.6))

1076 FORMAT (7 (El2.6, IX) )

VELI, VEL2, ',

PDYN °)

1007 FORMAT (/, ' MENISCUS ITERATION= ', I3,/, ' MENISCUS GEOMETRY',/,

> 2X, 'I',7X, 'X' ,7X, 'Y' ,6X, 'nl',6X, 'n2' ,6X, 'sl' ,6X, 's2')

1008 FORMAT (I3,6F8.4)

6295 FORMAT( ' ND, Xl, X2,

> ' TEMP, PBUB, PSI,

6297 FORMAT(I5,',',7(EI0.4,','),EI0.4)

1077 FORMAT (I5, IX, 7 (El0.4, IX) ,El0.4)

1078 FORMAT(A40, IX,E20.6)

1079 FORMAT(A40, ',',E20.6)

IF (IMODE.GT.0) CLOSE(7)

IF (IOUT8. NE. 0. AND. IMODE. GT. 0) CLOSE (8)

IF (IOUT9 .NE. 0.AND. IMODE. GT. 0) CLOSE (9)

STOP

END
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So Subroutine STREAM

SUBROUTINE STREAM (NGNODE, NXP,NYP, NROW)

PARAMETER (MXE= 25, MYE= 20)

PARAMETER (MXN= I+2*MXE)

PARAMETER (MYN= I+2*MYE)

PARAMETER (MTE= MXE*MYE)

PARAMETER (MTN= MXN*MYN)

PARAMETER (MTN2= MTN+4*MYN+2*MXN+8)

! # elements in x & y direcs

! # nodes in x-direction

' # nodes in y-direction

, total # elements

' total # nodes (quadratic)

! tot # nodes (w/4th-order)

COMMON/GRID/

*X(MTN2,2),V(MTN, 2),PSI(MTN),SURFL(4,MXE),SURFN(4,MXE, 2),

*SURFT(4,MXE, 2)

NSTART= NGNODE-NXP+I

PSI(NSTART)= 0.

DO i00 J= NSTART,NGNODE, 2

IF (J.NE.NSTART) THEN

AX= 2.*V(J, 2)- 4.*V(J-I, 2) + 2.*V(J-2,2)

BX= -3.*V(J-2,2)+ 4.*V(J-I,2)- V(J,2)

CX= V(J-2,2)

AY= 2.*V(J, i)- 4.*V(J-I, i) + 2.*V(J-2, I)

BY= -3.*V(J-2,1)+ 4.*V(J-I,I)- V(J,I)



CY= V(J-2, i)

PSI(J-l)= PSI (J-2) +
> (A¥/24.+BY/8.+CY/2.)* (X(J,2)-X(J-2,2))-

> (AX/24. +BX/8. +CX/2. )* (X(J, i) -X(J-2, i) )

PSI(J)= PSI(J-l)+
> (7. *AY/24. +3.*BY/8. +CY/2. )* (X(J, 2) -X(J-2,2) )-

> (7. *AX/24. +3 .*BX/8. +CX/2. )* (X(J, i)-X(J-2, i) )

END IF

i00 CONTINUE

DO 200 J= NSTART, NGNODE
JT= J-NROW

JMI= J-NXP

JM2= J

DO 200 K= 2,NYP

AX= 2.*V(JT,2)- 4.*V(JMI,2)+ 2.*V(JM2,2)
BX= -3.*V(JM2,2)+ 4.*V(JMI,2)- V(JT,2)

CX= V(JM2,2)
AY= 2.*V(JT, i)- 4.*V(JMI, I) + 2. *V(JM2, I)

BY= -3.*V(JM2,1)+ 4.*V(JMI, I)- V(JT, I)

CY= V(JM2, i)

PSI (JMI) = PSI (JM2) +

> (AY/24. +BY/8. +CY/2. )* (X (JT, 2) -X (JM2,2)) -
> (AX/24. +BX/8. +CX/2. )* (X (JT, i) -X (JM2, i) )

PSI (JT) = PSI (JMI) +

> (7. *AY/24. +3 .*BY/8. +CY/2. )* (X(JT, 2) -X(JM2,2) )-

> (7.*AX/24.+3.*BX/8.+CX/2.)*(X(JT,I)-X(JM2,1))

JM2= JT

JMI= JT-NXP

JT= JT-NROW

200 CONTINUE

RETtrKN

END

C. Subroutine GQWEIGHT

SUBROUTINE GQWEIGHT (NPOINT)

CWWWWWWW*WWWWWWW*WWWWWWWWW*WWWWWW*WW**WWW*W*WWWWWW WWWWWWWWWWWWWWWWWWWWWW

C Tabular lookup of abscissae and weight coefficients for gaussian

C quadrature formula. Tables stored in subroutine data blocks.

C Capability of determining coefficients for 2 to 10 point integration.
CWWW***WWW*WWW*WWWWWWWWWWWWWWWWWWWWW*W*WWWW*W*WWWW WWW*WWWWWWWWWWWWW**WWW

COMMON/VINTEG/XI(10,2),W(10)

DIMENSION C (9,2, i0)
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i00

DATA

* (C(l, l,J) ,J=l,

* (C (l,2,J), J=l,
DATA

* (C (2, l,J) ,J=l,

* (C (2,2,J) ,J=l,
DATA

* (C (3, l,J) ,J=l,

* .8611363115,

10)/-.5773502691, .5773502691,

10)/1.0000000000,1.0000000000,

10)/-.7745966692,0.0000000000,

i0)/ .5555555555, .8888888888,

i0)/-.8611363115,-.3399810435,

6"0./,

*(C(3,2,J),J=I,10)/ .3478548451, .6521451548,

* .3478548451, 6*0./
DATA

*(C(4,I,J),J=I,10)/-.9061798459,-.5384693101,

* .5384693101, .9061798459, 5*0./,

*(C(4,2,J),J=I,10)/ .2369268850, .4786286704,

* .4786286704, .2369268850, 5*0./
DATA

*(C(5, l,J),J=l,

* .2386191860 ,
*(C(5,2,J),J=l,

* .4679139345,
DATA

*(C(6, I,J),J=I,

*0.0000000000,

*(C(6,2,J),J=l,

* .4179591836,
DATA

*(C(7,l,J),J=l,

*-.1834346424,

* .9602898564,

8*0./,
8*0./

.7745966692,

.5555555555,

.3399810435,

.6521451548,

.0000000000,

.5688888888,

i0)/-.9324695142,-.6612093864,-.2386191860,
.6612093864, .9324695142, 4*0./,

I0)/ .1713244923, .3607615730, .4679139345,

.3607615730, .1713244923, 4*0./

10)/-.949i079123,-.7415311855,-.4058451513,

.4058451513, .7415311855, .9491079123, 3*0./,

10)/ .1294849661, .2797053914, .3818300505,
.3818300505, .2797053914, .1294849661, 3*0./

10)/-.9602898564,-.7966664774,-.5255324099,

.1834346424, .5255324099, .7966664774,

2*0./,

*(C(7,2,J),J=I,10)/ .1012285362, .2223810344, .3137066458,

* .3626837833, .3626837833, .3137066458, .2223810344,

* .1012285362, 2*0./
DATA

*(C(8,l,J),J=l,10)/-.9681602395,-.8360311073,-.6133614327,

*-.3242534234,0.0000000000, .3242534234, .6133614327,
* .8360311073, .9681602395, 0./,

*(C(8,2,J),J=l,10)/ .0812743883, .1806481606, .2606106964,

* .3123470770, .3302393550, .3123470770, .2606106964,

* .1806481606, .0812743883, 0./

DATA

*(C(9,l,J),J=l,10)/-.9739065285,-.8650633666,-.6794095682,
*-.4333953941,-.1488743389, .1488743389, .4333953941,

* .6794095682, .8650633666, .9739065285/,

*(C(9,2,J),J=I,10)/ .0666713443, .1494513491, .2190863625,

* .2692667193, .2955242247, .2955242247, .2692667193,

* .2190863625, .1494513491, .0666713443/

NINDEX= NPOINT- 1

DO i00 NP= I,NPOINT

W(NP) = C (NINDEX, 2,NP)

XI(NP, i)= C(NINDEX, I,NP)

XI (NP, 2) = C (NINDEX, I,NP)

CONTINUE

RETURN
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END

D. Subroutine GEOM

SUBROUTINE GEOM(NXP,NYP,NXE,NYE,NGNODE,NELEMENT,NCORNER,NROW, NCOL,

> IPRESS,NGNODE2,RASPECT,DXE,DYE, DXN, DYN, DXMIN,DYMIN, VOL)

C Definition of global node coordinates, global/local coincidence,

C surface nodes, surface/domain coincidence

PARAMETER (MXE= 25, FRYE= 20) i # elements in x & y direcs

PARAMETER (MXN= I+2*MXE) ! # nodes in x-direction

PARAMETER (MYN= I+2*MYE) ' # nodes in y-direction

PARAMETER (MTE= MXE*MYE) ! total # elements

PARAMETER (MTN= MXN*MYN) ! total # nodes (quadratic)

PARAMETER (MTE2= MXE-2+2*(MYE-I)) ! # 6-node pressure elements

PARAMETER (MTEI= MTE-MTE2-2) ! # 4-node pressure elements

PARAMETER (MTCI= (I+MXE)*(I+MYE)) ! # corner nodes

PARAMETER (MTC2= 2*(I+MYE)+I+MXE+2) ! extra nodes for mixed press

PARAMETER (MTC= MTCI+MTC2) ! total # press nodes

PARAMETER (MTN2= MTN+4*MYN+2*MXN+8) ! tot # nodes (w/4th-order)

COMMON/GRID/

*XG(MTN2,2),VEL(MTN, 2),PSI(MTN),SURFL(4,MXE),SURFN(4,MXE,2),

*SURFT(4,MXE,2)

COMMON/GRIDTYPE/

.CL(MTEI,4),CLLQ(MTE2,6),CLQ(2,9),ECL(MTE, 2),CQ(MTE,9),GNODE(MTC),

*CNODE(MTN),C24(MTE2,15),C44(2,25),PNODE(36),NSURF(4),

*SURFNODE(4,MXN),CSURF(4,MXE, 3),CE(MTN2,4),NCE(MTN2),

*CES(MXN, 2),NCES(MXN),IDIRICH(MTN2)

COMMON/SURFTYPE/ NESURF(4)

COMMON/SURFACE/

*XSURF(MXN),YSURF(MXN),YSURF0(MXN),PSURF(MXN),PBUB(MXN),

*TSURF(MXN),SURFNN(MXN, 2),SURFNT(MXN, 2)

DOUBLE PRECISION XSURF,YSURF,YSURF0,PSURF,TSURF,SURFNN

>SURFNT,PBUB

INTEGER CL,CQ,GNODE,CNODE, PNODE,SURFNODE,CSURF,GAM, BETA,R,S,P,ECL,

>CLLQ,CLQ,CE,CES,C24,C44

NI= 1

N2= NXP-2

NE= 1

NEL= 1

NELQ= 1

NEQ= 1

MMID: 2*(NXE-2)+I

DO 2 N= I,NYE

DO 3 I= NI,N2,2

CQ(NE, I)= I+NROW Quadratic coincidence table
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CQ (NE, 2 )= I+NROW+I

CQ (NE, 3) = I+NROW+2
CQ (hiE,4) = I+NXP+2

CQ(NE, 5) = I+2
CQ(NE, 6) = I+l

CQ(NE, 7) = I

CQ (NE, 8) = I+NXP

CQ(NE, 9)= I+NXP+I

IF (N.EQ.I) TH_q ! Linear/mixed coincidence

IF (I.EQ.NI.OR.I.EQ.N2) THEN

IF (IPRESS. EQ. i) THEN

CLQ (NEQ, i) = I+NROW
CLQ (NEQ, 2) =

CUD (NEQ, 3) =

CLQ (NEQ, 4) =

CLQ(NEQ, 5)=

CLQ (NEQ, 6)=

CLQ (NEQ, 7)=

CLQ (NEQ,8)=
CLQ (NEQ,9)=
ELSE

CUD (NEQ, i) =

CLQ (NEQ, 2 )=

CLQ (NEQ,3)=
CUD (NEQ, 4) =
END IF

IF (I.EQ.NI)

C44 (NEQ, i)=

C44 (NEQ, 2) =

C44 (NEQ, 3) =

C44 (NEQ, 4) =

C44 (NEQ, 5) =

C44 (NEQ, 6) =

C44 (NEQ, 7) =

c44 8)=
C44 (NEQ, 9) =

C44 (NEQ, i0) =

C44 (NEQ, ii) =

C44 (NEQ, 12)=
C44 (NEQ, 13 )=

C44 (NEQ, 14 )=

C44 (NEQ, 15)=
C44 (NEQ, 16)=

C44 (NEQ, 17)=

C44 (NEQ, 18) =

C44 (NEQ, 19)=

C44 (NEQ, 20) =

C44 (NEQ, 21) =

C44 (NEQ, 22) =

C44 (NEQ, 23 )=

C44 (NEQ, 24 )=

C44 (NEQ, 25) =

I+NROW+ 1

I+NROW+ 2

I+NXP+2
I+2

I+l

I
I+NXP

I+NXP+I

I+NROW

I+NROW+ 2
I+2

I

THEN

I+NROW

NGNODE+25+2 *NMID

I+NROW+I
C44 (NEQ, 2 )+i
I+NROW+ 2

NGNODE+2 I+NMID

I+NXP+2
NGNODE+ 9 :

I+2

NGNODE+ 2

I+l

NGNODE+ 1

I

NGNODE+ 5
I+NXP

NGNODE+ 17+NMID

C44 (NEQ, 16)+1

C44 (NEQ, 17)+1

C44 (NEQ, 18) +i
14+NMID+NGNODE

NGNODE+8

C44 (NEQ, 21)-i

C44 (NEQ, 22) -i

13 +NMID+NGNODE
I÷NXP+ 1

ELSE IF (I.EQ. N2) THEN
C44 (NEQ, I)= I+NROW

C44 (_, 2) = C44 (I,4)+i

C44 (NEQ, 3 )= I+NROW+I

C44 (NEQ, 4) = C44 (NEQ, 2) +i

tables
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C44 (NEQ, 5)= I+NROW+2

C44 (NEQ, 6) = C44 (I, 6)+3+NMID

C44 (NEQ, 7) = I+NXP+2

C44 (NEQ, 8) = C44 (i, 8)+3+NMID

C44 (NEQ, 9)= I+2

C44(NEQ, 10)= C44(i,10)+2

C44 (NEQ, ii) = I+l

C44 (NEQ, 12) = C44 (i, I0)+I

C44 (NEQ, 13) = I

C44 (NEQ, 14) = C44 (i,14 )+3+NMID

C44 (NEQ, 15)= I+NXP

C44 (NEQ, 16) = C44 (i, 16 )+3+NMID

C44 (NEQ, 17) = C44 (NEQ, 16) +I
C44 (NEQ, 18 )= C44 (NEQ, 17) +i

C44 (NEQ, 19 )= C44 (NEQ, 18 )+I

C44 (NEQ, 20) = C44 (i,20)+2

C44 (NEQ, 21) = C44 (NEQ, 8) -i

C44 (NEQ, 22) = C44 (NEQ, 21) -i

C44 (NEQ, 23)= C44(NEQ, 22)-I

C44 (NEQ, 24) = C44 (I,20)+I

C44 (NEQ, 25)= I+NXP+I
END IF

ECL (NE, I) = 2

ECL (NE, 2) = NEQ

NEQ= NEQ+I
ELSE

IF (IPRESS.EQ.I) THEN

CLLQ (NELQ, 1)= I+NROW

CLLQ (NELQ, 2 )= I+NROW+2

CLLQ (NELQ, 3 )= I+NXP+2
CLLQ (NELQ, 4) = I+2

CLLQ (NELQ, 5) = I

CLLQ (NELQ, 6) = I+NXP

ELSE

CLLQ(NELQ, i)= I+NROW

CLLQ (NELQ, 2) = I+NROW+2
CLLQ (NELQ, 3)= I+2

CLLQ (NELQ, 4) = I
END IF

C24 (NELQ, I)=

C24 (NELQ, 2 )=
C24 (NELQ, 3 )=

C24 (NELQ, 4 )=

C24 (NELQ, 5)=

C24 (NEiQ, 6) =

C24 (NELQ, 7) =

C24 (NELQ, 8) =

C24 (NELQ, 9) =

C24 (NELQ, i0) =

C24 (NELQ, ii) =

C24 (NELQ, 12 )=

C24 (NELQ, 13 )=

C24 (NELQ, 14) =

C24 (NELQ, 15) =

I+NROW

C24 (NELQ, I)+i

C24 (NELQ, 2 )+i

C44 (i, 6)+ (NELQ-I) *2+2
I+NXP+2

C44 (i, 8)+ (NELQ-I) *2+2
I+2
I+l

I

C44 (i, 8) + (NELQ-I) "2

I+NXP

C44 (i, 6) + (NELQ- i) *2
C24 (NELQ, 12 )+i
I+NXP+ 1

C24 (NELQ, i0) +I

ECL(NE, i)= 1
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ECL (NE, 2) = NELQ
NELQ= NELQ+I

END IF

ELSE

IF (I.EQ.NI.OR. I.EQ.N2) THEN

IF (IPRESS.EQ.I) THEN

CLLQ (NELQ, 1)= I+NROW

CLLQ(NELQ, 2) = I+NROW+I

CLLQ (NELQ, 3 )= I+NROW+2

CLLQ (NELQ, 4): I+2

CLLQ (NELQ, 5)= I+l
CLLQ (NELQ, 6) = I
ELSE

CLLQ (NELQ, I) = I+NROW

CLLQ (NELQ, 2 )= I+NROW+2

CLLQ (NELQ, 3 )= I+2

CLLQ (NELQ, 4) = I
END IF

NREF= 24+2*NMID+8*(N-I)+I+NGNODE

ZF (I.EQ.N2> NREF=NREF+2
C24(NELQ, I)= I+NROW

C24(NELQ, 2)= NREF

C24(NELQ, 3)= I+NROW+I
C24 (NELQ, 4) = NREF+ 1

C24 (NELQ, 5)= I+NROW+2

C24 (NELQ, 6)= I+NXP+2

C24(NELQ, 7)= I+2

C24(NELQ, 8)= NREF-7

C24(NELQ, 9)= I+l

C24(NELQ, 10)= NREF-8

C24(NELQ, II)= I

C24(NELQ, 12)= I+NXP

C24(NELQ, 13)= NREF-4

C24(NELQ, 14)= I+NXP+I

C24(NELQ, 15)= NREF-3

ECL (NE, i) = 1

ECL (NE, 2 )= NELQ

NELQ= NEIQ+ 1
ELSE

CL(NEL, i)= I+NROW

CL(NEL, 2) = I+NROW+2

CL (NEL, 3) = I+2
CL(NEL, 4) = I

ECL(NE, i) = 0

ECL (NE, 2) = NEL
N-EL= NEL+I

END IF

END IF

! Linear coincidence table

NE= NE+I

3 CONTINUE

NI= NI+NROW

N2= N2+NROW

2 CONTINUE

NEQ= NEQ- 1
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NELQ= NET__- 1

C Corner node identifier

967
DO 967 N= I,NGNODE

CNODE (N) = 0
NI= 1

N2= NXP

NCORNER= 0

DO 4 I= I,NYP, 2

DO 5 K= NI,N2,2

NCORNER= NCORNER+I

CNODE(K)= NCORNER
5 GNODE(NCORNER)= K

NI= NI+NROW

N2= N2+NROW

4 CONTINUE

30

31

IF (IPRESS. EQ. i) THEN
DO 30 N= 1,2

IF (N.EQ.I) K= 2

IF (N.EQ.2) K= NXP-I

DO 30 I= I,NYE+I
NCORNER= NCORNER+ 1

CNODE (K) = NC0RNER

GNODE (NCORNER) = K
K= K+NROW

CONTINUE

DO 31 K= NXP+I,2*NXP, 2

NCORNER= NCORNER+ 1

CNODE (K) = NCORNER
GNODE (NCORNER) = K

CONTINUE

CNODE (NXP+2) = NCORNER+I

GNODE (NCORNER+I) = NXP+2

CNODE (2*NXP- 1 )= NCORNER+2

GNODE (NCORNER+2) = 2*NXP-I

NCORNER= NCORNER+2
END IF

C SET GLOBAL COORDINATES

DO 6 I= I,NYE+I

NS= (I-l) *NROW+I
N= NS

DO 6 J= I,NXP

XG(N,I)= REAL(XSUBF (J))

XG(N,2)= XG(NS,2) *REAL(YSURF(J) )/REAL (YSURF (i))
N= N+I

6 CONTINUE

NE= 0

DO 7 I= I,NYE

DO 8 J= I,NXE

NE= NE+I

DO8 K= 1,2

IF (I.EQ.NYE) XG(CQ(NE,2),K)=

* (XG (CQ (NE, 1 ),K) +XG (CQ (NE, 3 ),K) )/2.
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XG (CQ (NE, 8) ,K)= (XG (CQ (NE, 7) ,K) +XG (CQ(NE, i),K) )/2.
8 CONTINUE

DO 9 K= 1,2

9 XG (CQ (NE, 4), K) = (XG (CQ (NE, 3), K) +XG (CQ (NE, 5), K) )/2.

7 CONTINUE

DO i0 NE= I,NELEMENT

XG(CQ(NE, 9), i)= (XG(CQ(NE,2), I)+XG(CQ(NE, 6), i) )/2.

XG(CQ(NE, 9) ,2) =(XG(CQ(NE, 2), 2)+XG(CQ(NE, 6), 2) )/2.

i0 CONTINUE

C x-coordinates of quadratic node additions

i00

i01

DO
XG

XG

XG

XG

XG

XG

XG

XG

XG
XG

XG

XG

XG

XG

XG

i00 N= I,NEQ

(C44 (N, 12) i)=

(C44 {N, 23) i)=

(C44 (N, 24) i)=

(C44 (N,17) i)=

(C44(N, 2) I)=

(C44(N, i0) I)=

(C44 (N, 21) i)=

(C44 (N, 20) i)=

(C44 (N, 19) I) =

(C44(N, 4) i)=

(C44(N,22) i)=

(C44 (N,18) i) =
(C44 (N, 14) I)=

(C44 (N, 16) i)=

(C44(N, 8) I)=

.5* (XG (C44 (N, 13), i) +XG (C44 (N, Ii), I) )

XG (C44 (N, 12), i)

XG (C44 (N, 12), i)

XG (C44 (N, 12), I)

XG (C44 (N, 12), i)

•5* (XG(C44 (N, II),I)+XG(C44(N, 9),i))

XG (C44 (N, i0), i)

XG(C44(N, 6) I)=

CONTINUE

DO i01 N: I,NELQ
IF (N.LE.NXE-2) THEN

XG(C24(N, 10),I)= XG{C24(N, 9)

XG(C24(N, 12),I)= XG(C24(N, 9)

XG(C24(N, 15),I)= XG(C24(N, 8)

XG(C24(N, 13),I)= XG(C24(N, 8)

XG(C24(N, 6),i)= XG(C24(N, 7)

XG(C24(N, 4),1)= XG(C24(N, 7)

ELSE

XG (C24

XG (C44 (N, i0 ),1 )

XG (C44 (N, I0), i)

XG (C44 (N, i0), i)

XG (C44 (N, ii), i)
XG (C44 (N, ii), i)

XG (C44 (N, 13), i)

XG (C44 (N, 13 ),I)

XG (C44 (N, 9),1)

XG (C44 (N, 9),1)

i)
i)
1)
I)
i)
i)

(N,i0), I)=
XG (C24 (N, 8),1)=

XG (C24 (N, 13), I)=

XG (C24 (N, 2),1)=

XG (C24 (N, 15), i) =

XG (C24 (N, 4),1)=
END IF

CONTINUE

DO Ii0 N= I,NEQ

XG (C44 (N, 12), 2) = QCAL (XG (C44 (N, 12), I),

> XG(C44 (N, 13),I),XG (C44 (N, ii),i),XG(C44 (N,
> XG (C44 (N, 13), 2), XG (C44 (N, Ii), 2), XG (C44 (N,

XG (C44 (N, i0), 2 )= QCAL (XG (C44 (N, I0), i),

> XG (C44 (N, 13), I) ,XG (C44 (N, ii), i), XG (C44 (N,

> XG (C44 (N, 13), 2), XG (C44 (N, ii), 2) ,XG (C44 (N,

XG(C44(N,24),2)= QCAL(XG(C44(N,24),I),
> XG (C44 (N, 15), i), XG (C44 (N, 25), i), XG(C44 (N,

> XG (C44 (N, 15 ),2 ),XG (C44 (N, 25 ),2 ),XG (C44 (N,

XG(C44(N, 20),2)= QCAL(XG(C44(N, 20),I),

.5" (XG (C24 (N, ii), i)+XG (C24 (N, 9),1))

.5*(XG(C24(N, 9),I)+XG(C24(N, 7),1))

XG (C24 (N, i0), i)

XG (C24 (N, i0), i)

XG (C24 (N, 8),1)

XG (C24 (N, 8),1)

9) ,i),

9),2))

9) ,1),

9),2))

7) ,i),

7),2))
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> XG (C44 (N, 15), i) ,XG(C44 (N, 25), i) ,XG(C44 (N,
> XG (C44 (N, 15), 2) ,XG (C44 (N, 25), 2) ,XG (C44 (N,

XG(C44(N, 2),2)= QCAL(XG(C44(N, 2),1),

> XG(C44(N, I) ,I) ,XG(C44 (N, 3),I),XG(C44(N,

> XG(C44(N, I),2),XG(C44(N, 3),2),XG(C44(N,

XG(C44(N, 4),2)= QCAL(XG(C44(N, 4),1),

> XG(C44(N, I) ,I) ,XG(C44 (N, 3) ,I) ,XG(C44(N,
> XG(C44(N, I) ,2) ,XG(C44(N, 3),2),XG(C44(N,

Ii0

7) ,i),
7),2))

5) ,i),

5),2))

XG (C44 (N, 23 )

XG (C44 (N, 17)

XG (C44 (N, 22 )

XG (C44 (N, 18)

XG (C44 (N, 21)

XG (C44 (N, 19)

XG (C44 (N, 8)

XG (C44 (N, 14 ),2 )=

XG(C44 (N, 16),2) =

2)=

2)-
2)=

2)=
2)=
2)=
2)=

XG (C44 (N, 6),2)=
CONTINUE

DO Iii N= I,NELQ

5) ,i),
5),2))

•5* (XG (C44 (N, 13 )

•5* (XG (C44 (N, 15)
•5* (XG (C44 (N, 12 )

•5* (XG (C44 (N, 24 )

•5* (XG (C44 (N, ii)

•5* (XG (C44 (N, 25)

•5* (XG (C44 (N, i0)

•5* (XG (C44 (N, 20), 2 )+XG (C44 (N,

.5*(XG(C44(N, 9) ,2)+XG(C44 (N,
•5* (XG (C44 (N, 7), 2) +XG (C44 (N,

2 )+XG (C44 (N, 15 ),2 ))

2) +XG (C44 (N, 1),2))

2) +XG (C44 (N, 24),2))

2)+XG(C44(N, 2),2))

2) +XG (C44 (N, 25),2) )
2)+XG(C44(N, 3),2))

2)+XG (C44 (N, 20) ,2) )

4),2))

7),2))

5),2))

IF (N.LE.NXE-2) THEN

XG(C24(N, 15),2)= .5*(XG(C24(N, 8),2)+XG(C24(N,14),2))

XG(C24(N, 13),2)= .5*(XG(C24(N, 14),2)+XG(C24(N, 2) ,2))

XG(C24(N, 6),2)= .5*(XG(C24(N, 7),2)+XG(C24(N, 5),2))

XG(C24(N, 4),2)= .5*(XG(C24(N, 5),2)+XG(C24(N, 3),2))
ELSE

XG(C24(N, 2),2)= QCAL(XG(C24(N, 2),1),

> XG(C24(N, I) ,I) ,XG(C24 (N, 3),I),XG(C24(N, 5),I),

> XG(C24(N, I),2),XG(C24(N, 3),2),XG(C24(N, 5),2))

XG(C24(N, 4),2)= QCAL(XG(C24(N, 4),1),

> XG(C24(N, I) ,I) ,XG(C24(N, 3) ,I) ,XG(C24(N, 5),1),
> XG(C24(N, I),2),XG(C24(N, 3) ,2),XG(C24(N, 5) ,2))

XG(C24(N, 13),2)= .5*(XG(C24(N, 10),2)+XG(C24(N, 2) ,2))
XG(C24(N, 15),2)= .5*(XG(C24(N, 8),2)+XG(C24(N, 4),2))

END IF

iii CONTINUE

C Minimum grid dimensions

DXMIN= XG(2, i) -XG(I, I)

DYMIN= XG (NXE+I, 2 )-XG (NXE+I+NROW, 2 )

C Boundary node definition and type

NSURF (i) = NYP

NSURF (3) = NYP

NSURF (2) = NXP-2

NSURF (4) = NXP-2

ii

NP= -I*NXP+I

DO ii N= I,NSURF(1)
NP=NP+NXP

SURFNODE(I,N)=NP
CONTINUE

NP= NGNODE-NXP+ 1

DO 12 N= I,NSURF(2)
NP=NP+ 1
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S[rR9%_ODE (2, N) = NP
12 CONT IIqUE

13

NP= 0

DO 13 N= I,NSURF(3)
NP=NP+NXP

_DE(3,N) = NP
CONTINUE

14

NP= 1

DO 14 N: I,_SU_(4)
NP= NP+I

SURFNODE (4,N) : NP
CONTINUE

C Boundary element definition and properties

NESURF (I)= NYE
NESURF (3)= NYE
NESURF (2) = NXE

NESURF(4 )= NXE

NG= 1

DO 15 N= I,NESURF(1)

CSURF(I,N, I)= NG+NROW

CSURF (I,N, 2) = NG+NXP

CSURF (I,N, 3) = NG

SURFL (I,N) = SQRT( (XG (NG+NROW, i)-XG (NG, i) )**2+

SURFT (I,N, i) =

SURFT (I,N, 2) =

SURFN (i,N, I) =

ST/RFN (I,N, 2) =
NG= NG+NROW

15 CONTINUE

(XG (NG+NROW, 2)-XG (NG, 2) )**2)

(XG (NG, I)-XG (NG+NROW, i) )/SURFL (I,N)

(XG (NG, 2 )-XG (NG+NROW, 2 ))/SURFL (I,N)

-i. *SURFT (I,N, 2)

SURFT (I,N, i)

NG= NGNODE

DO 18 N= I,NESURF(2)
CStrRF(2,N, i) = NG

CSURF (2,N, 2) = NG-I

CSURF (2,N, 3) = NG-2

SURFL (2,N) = SQRT( (XG(NG-2, i)-XG (NG, i) )**2+

SURFT (2,N, i)=
SURFT (2,N, 2) =

SURFN (2,N, I) =

SURFN (2,N, 2) =
NG= NG-2

18 CONTINUE

(XG (NG-2,2) -XG (NG, 2 ))**2 )

(XG (NG-2, I) -XG (NG, i) )/SURFL (2,N)

(XG (NG-2,2) -XG (NG, 2 ))/SURFL (2,N)

-I. *SURFT (2,N, 2)

SURFT (2,N, i)

NG= NXP

DO 16 N: I,NE_(3)

CSURF (3,N, i)= NG

CSURF (3,N, 2) = NG+NXP

CSURF(3,N, 3)= NG+NROW

SURFL(3,N) = SQRT( (XG (NG+NROW, i) -XG(NG, i) )**2+

* (XG (NG+NROW, 2 )-XG (NG, 2 ))**2)

SURFT (3,N, i) = (XG (NG+NROW, i) -XG (NG, I) )/SURFL (3,N)
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16

SURFT (3,N, 2) =

SiTRFN (3,N, i)=
SURFN (3,N, 2) =

NG= NG+NROW

CONTINUE

(XG (NG+NROW, 2)-XG (NG, 2) )/SURFL (3,N)

-i. *SURFT (3,N, 2)
SURFT (3,N, i)

VOL= 0.

NG= 1

DO 17 N= I,NESURF(4)

CSURF (4,N, I)= NG

CSURF (4,N, 2) = NG+I

CSI/RF (4,N, 3) = NG+2

XI= XG(NG, i)

X2= XG(NG+I, I)

X3= XG(NG+2, I)

VI= XG (NG, 2)

V2= XG(NG+I, 2)

V3= XG (NG+2,2)

A= ((VI-V2) / (XI-X2) - (V2-V3) / (X2-X3) )/ (XI-X3)

B= (VI-V2) / (XI-X2) -A* (XI+X2)
C= VI-A*XI**2-B*XI

XIP= 2 .*A*XI+B

X3P= 2.*A*X3+B

SURFL(4,N)= (X3P*SQRT(X3P**2+I.)+ALOG(X3P+SQRT(X3P**2+I. ))-

* XIP*SQRT (XlP**2+I.)-ALOG (XlP+SQRT (XlP**2+I.) ))/
* 4./A

SURFT (4,N, i)= (XG(NG+2, i) -XG (NG, i) )/SURFL(4,N)

SURFT(4,N, 2) = (XG(NG+2,2) -XG(NG,2) )/SURFL(4,N)

SURFN (4,N, i) = -i. *SURFT (4,N, 2)

SURFN(4,N, 2) = SURFT (4,N, i)

VOL= VOL+. 5" (XG (NG+2,2) +XG (NG, 2 ))* (XG (NG+2,1) -XG (NG, 1 ))
NG= NG+2

17 CONTINUE

C Node-Element Correlation Table

35

DO 35 NG= I,NGNODE2
NCE(NG)= 0

IDIRICH(NG)= 0

DO 35 N= 1,4

CE(NG,N)= 0
CONTINUE

DO 40 NE: I,NELEMENT

IF (ECL(NE, I).EQ.0) THEN

NM= 9

ELSE IF (ECL(NE, I).EQ.I) THEN
NM= 15

ELSE IF (ECL(NE, I).EQ.2) THEN
NM-- 25

END IF

DO 40 N: I,NM

IF (ECL(NE, I).EQ.0) THEN

NG= CQ (NE, N)

ELSE IF (ECL(NE, I).EQ.I) THEN

NG= C24 (ECL(NE,2) ,N)

ELSE IF (ECL(NE, I).EQ.2) THEN

NG= C44 (ECL(NE,2) ,N)
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41

42

40

50

61

62

60

8O

81

IF

IF (I_3E(NG).EQ.0) THEN

NCE(NG): NCE(NG)+I

CE(NG,NCE(NG))=NE

ELSE

130 41 NC= I,NCE(NG)

IF (CE(NG,NC).EQ.NE) GOTO 42

NCE(NG)= NCE(NG)+I

CE(NG,NCE(NG))= NE

CONTINUE

END IF

CONTINUE

DO 50 NG= I,NXP

NCES(NG)= 0

DO 50 N= 1,2

CES(NG,N)= 0

CONTIIqUE

DO 60 NE= I,NESURF(4)

DO 60 N= 1,3

NG= CSURF (4, NE, N)

IF (NCES(NG).EQ.0) THEN

NCES (NG) = NCES (NG) +I

CES (NG, NCES (NG)) = NE

ELSE

DO 61 NC= I,NCES(NG)

IF (CES (NG, NC). EQ.NE)

NCES (NG) = NCES(NG) +I

CES (NG,NCES (NG)) = NE

CONTINUE

END IF

CONTINUE

GOTO 62

NL= 1

N-R= NXP

DO 80 N= I,NYP

IDIRICH (NL) = 1

IDIRICH (NR) = 1

NL= NL+NXP

NR= NR+NXP

CONTINUE

DO 81 N= NGNODE-NXP+I,NGNODE

IDIRICH(N) = 1

IDIRICH (NGNODE+5) = 1

IDIRICH (NGNODE+I2+NMID) = 1

IDIRICH (NGNODE+IT+NMID) = 1

IDIRICH(NGNODE+24+2*NMID) = 1

RETURN

END

E_ FuncfionQCAL

FUNCTIONQCAL(X, XI,X2,X3,VI,V2,V3)
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A= ((VI-V2)/(XI-X2)-(V2-V3)/(X2-X3))/(XI-X3)

B= (VI-V2)/(XI-X2)-A*(XI+X2)

C= VI-A*XI**2-B*XI

QCAL= A*X**2+B*X+C

RETURN

END

F, Subroutine GEOM2

SUBROUTINE GEOM2(NXE,NYE,NXP,NROW, NSMALL,RASPECT,FSCALE)

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

(MXE= 25, MYE= 20)

(MXN= I+2*MXE)

(MYN= I+2*MYE)

(MTE: MXE*MYE)

(MTN= MXN*MYN}

(MTN2= MTN+4*MYN+2*MXN+8)

! # elements in x & y direcs

! # nodes in x-direction

! # nodes in y-direction

! total # elements

! total # nodes (quadratic)

! tot # nodes (w/4th-order)

COMMON/GRID/

*XG(MTN2,2),VEL(MTN,2),PSI(MTN),SURFL(4,MXE),SURFN(4,MXE,2),

*SURFT(4,MXE, 2)

COMMON/SURFACE/

*XSURF (MXN), YSURF (MXN), YSURF0 (MXN), PSURF (MXN), PBUB (MXN),

*TSLTRF (MXN), SURFNN (MXN, 2), SURFNT (MXN, 2)

DIMENSION FSCALE(2) ,NSMALL(2)

DOUBLE PRECISION XSURF,YSURF,YSURF0, PSTJRF,TSUR_, SURFNN

>SURFNT, PBUB

IF (NSMALL(1).EQ.0) FSCALE(1): i.

IF (NSMALL(2).EQ.0) FSCALE(2)= i.

DXS= FSCALE (1 ) *REAL (NXE) +REAL (NSMALL (1 ) )* (I. -FSCALE (1 ))

DYS=

DXS=

DYS=

DXL=

DYL=

NSX=

NSY=

NLX=

NLY=

FSCALE (2) *REAL (NYE)+REAL (NSMALL (2)) * (i. -FSCALE (2) )

i./DXS/2.

i./DYS/2.

FSCALE (i) *DXS

FSCALE (2 )*DYS

NSMALL (i)

2 *NSMALL (2)

NXE -NSX

NYE*2-NSY

XSLmF (I)= 0.
XSURF (NXP) = i.

DO 3 N= 2,NSX+NLX+I

NN= NXP-N+I

IF (N-I.LE.NSX) THEN

DX= DXS
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ELSE

DX: DXL

END IF

XSURF (N) = XSURF (N-I) +DX

XSURF (NN) : XSURF (NN+I) -DX

CONTINUE

XSURF (NXE+I) = 0.5

XG(I, 2) = RASPECT

NP: 1

DO 4 N: 2,NSY+NLY+I

NP= NP+NXP

IF (N-I.LE.NSY) THEN

DY= DYS

ELSE

DY= DYL

END IF

XG (NP, 2 )= XG (NP-NXP, 2 )-DY

CONTINUE

XG (NP, 2) = 0.

RETURN

_D

G. Subroutine TENSCAL

SUBROUTINE TENSCAL (NELEMENT ,NLNQ,NLNL, NPOINT, IPRESS, PR, PVAP)

C Calculates tensors used in formulation of finite element equations.
CWWWWWWWWWW*WWW*W**W*WW**W*W**WW***WWWW.W.WW.WWWWW**WW.WW***WWWWWWWWWWWW

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

PARAMETER

(MXE= 25, MYE= 20)

(MXN: I+2*MXE)

(MYN: I+2*MYE)

(MTE= MXE*MYE)

(MTN= MXN*MYN)

(MTE2= MXE-2+2* (MYE-I))

(MTEI= MTE-MTE2-2 )

(MTCI= (I+MXE)* (I+MYE))

(MTC2= 2* (I+MYE) +I+MXE+2)

(MTC= MTCI+MTC2 )

(MTN2 = MTN+4*MYN+2*MXN+8 )

! # elements in x & y direcs

' # nodes in x-direction

! # nodes in y-direction

! total # elements

! total # nodes (quadratic)

! # 6-node pressure elements

! # 4-node pressure elements

! # corner nodes

! extra nodes for mixed press

total # press nodes

! tot # nodes (w/4th-order)

COMMON/VINTEG/XI(10,2),W(10)

COMMON/VLIN/AI (2) ,B1 (2 ) ,C1 (2 ),D1 (2) ,XINL (4,2 ),XINLQ (6,2,2 ) ,DETJL

C0MMON/VQUAD/

*A2 (2) ,B2 (2) ,C2 (2) ,D2 (2) ,E2 (2) ,F2 (2) ,G2 (2) ,H2 (2), P2 (2),

*XINQ (9,2), DETJQ, JINV(2,2),A(2),B(2) ,ADI (2),AD2 (2) ,BDI (2) ,BD2 (2)

COMMON/GRID/

*XG (MTN2,2) ,VEL (MTN, 2), PSI (MTN), SURFL (4, MXE), SURFN (4, MXE, 2),

*SURFT (4, MXE, 2)
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COMMON/GRIDTYPE/

*CL (MTEI, 4), CLLQ (MTE2,6), CLQ(2,9), ECL (MTE, 2), CQ (MTE, 9), GNODE (MTC),

*CNODE (MTN) ,C24 (MTE2,15), C44 (2,25), PNODE (36), NSURF (4),

*_/RFNODE (4,MXN), CSURF (4,MXE, 3), CE (MTN2,4), NCE (MTN2),

*CES (MXN, 2 ),NCES (MXN), IDIRICH (MTN2)

COMMON/SLrRFI_PE/ NESURF(4)

COMMON/SURFACE/

*XSURF (MXN), YSURF (MXN), YSURF0 (MXN), PSURF (MXN), PBUB (MXN),

*TSURF (MXN), SURFNN (MXN, 2), SURFNT (MXN, 2)

COMMON/TENSOR/

*EA (MTE, 9,9), EB (MTE, 9,9,9,2), EC (MTE, 9,9),

*EA24V(MTE2,9,15), EB24 (MTE2,15, 9, 15,2), EC24 (MTE2,15,15),

*EA44V(2,9,25), EB44 (2,25,9,25,2), EC44 (2,25,25),

*EA24T(MTE2,15,15), EA44T(2,25,25),

*ED(MTEI, 9,4,2), EDLQ (MTE2,9,6,2), EDQ(2,9, 9,2),
*EE (MTEI, 4,4), EELQ (MTE2,6,6), EEQ (2,9,9),

*EF (MTEI, 4,9,2), EFLQ (MTE2,6,9,2), EFQ(2,9,9,2),

*EG(MTEI,4,9,2,9,2),EGLQ(MTE2,6,9,2,9,2), EGQ(2,9,9,2,9,2),

*EH(MTEI,4,9,9,2,2),EHLQ(MTE2,6,9,9,2,2), EHQ(2,9,9,9,2,2),

*EQ (MTE, 9,2,9, 2), SAQ(MXE, 3,9), SAQ2 (2, 5,25)

DOUBLE PRECISION XSURF, YSURF, YSURF0, PSURF, TSURF, SURFNN,

>SI]RZ%Zr,PBUB

INTEGER CL, CQ, CLQ, CLLQ, GNODE, CNODE, PNODE, SLrRFNODE, CSURF, ECL
INTEGER GAM, BETA, R, S, P,CE, CES, C24, C44
REAL JINV

C EA Momentum, Energy, Vel Corr

C EB Momentum, Energy

C EC Momentum, Energy
C ED Momentum, Vel Corr

C EE Press Corr init and final

C EF Press Corr final

C EG Press Corr final

C EH Press Corr final

C EQ Momentum

C Natural element coordinates: 4-node linear representation

XINL (i, i)=-i.

XINL (2, i) = i.

XINL(3, i)= i.

XINL (4, I)=-i.

XINL (i, 2) =-i.

XINL(2,2) =-i.

XINL(3,2) = i.

XINL(4,2) = i.

C Natural element coordinates: 6-node mixed linear/quad representation

XINLQ (i, i, I)=-I.

XINLQ(2, I, i)= 0.

XINLQ(3, i, i)= i.

XINLQ(4, I, i) = i.

XINLQ(5, i, i) = 0.

! Side element
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XINLQ (6, i, i):-i.

XINLQ (I, 2, I):-i.

XINiQ (2,2, i) =-i.

XINLQ (3,2, i) =-i.

XINLQ(4,2, i) = i.

XINLQ (5,2, i)= i.

XINLQ(6,2, i)= i.

XINLQ(I, i, 2) =-I.

XINLQ(2, I, 2) = i.

XINLQ(3, I, 2) = i.
XINLQ(4, i, 2) = 1

XINLQ (5, 1,2)=-1
XINLQ (6, i, 2):-I

XINLQ (I, 2,2) =-I

XINiQ (2,2,2) =-i

XINLQ (3,2,2) = 0
XINLQ (4,2,2) = 1

XINiQ (5,2,2) = 1

XINLQ(6,2,2) = 0

! Top element

C Natural element coordinates: 9-node quadratic representation

XINQ(I, I)=-I.

XINQ(2, i) : 0
XINQ(3, I)= 1

XINQ(4, i): 1

XINQ(5, i) = 1

XINQ(6, i) = 0

XINQ (7, i)=-i

XINQ (8, i) =-I
XINQ(9 I)= 0

XINQ(I 2)=-i

XINQ (2 2) =-I

XINQ (3 2)=-1

XINQ(4 2)= 0

XINQ(5 2)= i.

XINQ(6 2)= i.

XINQ(7 2)= i.

XINQ (8,2) : 0.

XINQ (9,2) : 0.

C Determine abscissae and weight coefficients for specified number of Gaussian

C Quadrature integration points. Subroutine employs tabular lookup.

CALL GQWEIGHT (NPOINT)

C Clear array values

DO 20 NE= I,NELEMENT

DO 21 N= I,NLNQ

DO 21 M: I,NLNQ

EA (NE,N, M) = 0.
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23

21

61

60

EC (NE,N, M) = 0.

DO 21 I= 1,2

DO 23 J= 1,2

EQ (NE,N, J, M, I) = 0.

DO 21 GAM= I,NLNQ

EB (NE, N, GAM, M, I)= 0.
CONTINUE

IF (ECL(NE, I).EQ.0) THEN
NLN= 4

NTN= 9

ELSE IF (ECL(NE, I).EQ.I) THEN
NLN= 6

NTN-- 15

ELSE IF (ECL(NE, I).EQ.2) THEN
NLN= 9

NTN= 25

END IF

IF (NTN.NE. 9) THEN

DO 60 N= I,NTN

DO 61 M= I,NLNQ

IF (NTN.EQ.15) THEN

EA24V (ECL (NE, 2), M,N) = 0.
ELSE

EA44V(ECL(NE,2) ,M,N)= 0.
END IF

DO 61 L= I,NTN

DO 61 I= 1,2

IF (NTN.EQ.15) THEN

EB24(ECL(NE,2) ,N,M,L,I)= 0.
ELSE

EB44 (ECL (NE, 2) ,N, M, L, I)= 0.

END IF

CONTINUE

DO 60 M= I,NTN

IF (NTN.EQ.15) THEN

F_A24T(ECL(NE,2) ,N,M)= 0.
EC24 (ECL(NE,2) ,N,M)= 0.

ELSE

EA44T(ECL(NE,2) ,N,M)= 0.

EC44 (ECL(NE, 2) ,N,M)= 0.
END IF

CONTINUE

END IF

DO 22 N= I,NI_NQ

DO 22 M= I,NI/_

DO22 I= 1,2

IF (ECL(NE, I).EQ.0) THEN

ED(ECL(NE,2) ,N,M,I)= 0.

EF(ECL(NE,2) ,M,N,I)= 0.

ELSE IF (ECL(NE, I).EQ.I) THEN

EDLQ(ECL(NE,2) ,N,M,I)= 0.

EFLQ (ECL (NE, 2 ),M,N, I) = 0.

ELSE IF (ECL(NE, I).EQ.2) THEN
EI_ (ECL (NE, 2), N, M, I) = 0.

EFQ (ECL (NE, 2), M, N, I) = 0.
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END IF

DO 22 GAM= i, NLNQ

DO 22 J= 1,2

IF (ECL(NE, I).EQ.0) THEN

EG(ECL(NE,2) ,M,N, I,GAM, J)= O.

EH (ECL (NE, 2), M,N, GAM, I, J) = 0.

ELSE IF (ECL(NE, i) .EQ. I) THEN

EGLQ(ECL(NE,2) ,M,N, I,GAM, J)= 0.

EHLQ (ECL (NE, 2 ), M, N, GAM, I, J) = 0.

ELSE

EGQ (ECL (NE, 2), M, N, I, GAM, J) = 0.

EHQ(ECL(NE, 2) ,M,N, GAM, I,J)= 0.

END IF

22 CONTINUE

DO 20 N: I,NLN

DO 20 M: I,NLN

IF (ECL(NE, I) .EQ.0) THEN

EE (ECL (NE, 2) ,N,M) : 0.

ELSE IF (ECL(NE, I).EQ.I)

EELQ(ECL (NE, 2) ,N, M) : 0.

ELSE

EEQ (ECL (NE, 2) ,N, M) = 0.

END IF

THEN

20 CONTINUE

29

DO 29 NP= I,NESURF(4)

DO 29 N= 1,3

DO 29 M= I,NLNQ

SAQ (NP,N,M) = 0.

CONTINUE

89

DO 89 NP= 1,2

DO 89 N: 1,5

DO 89 M: 1,25

SAQ2(NP,N,M)= 0.

CONTINUE

C Isoparametric function calculation loop

DO 30 NE= I,NELEMEbrF

NLN: 4

IF (ECL(NE, I).EQ.0) THEN

NLN: 4

NTN= 9

ELSE IF (ECL(NE, I).EQ.I) THEN

IF (IPRESS.EQ.I) NLN= 6

NTN= 15

ELSE IF (ECL(NE, I).EQ.2) THEN

IF (IPRESS.EQ.I) NLN= 9

NTN= 25

END IF

C Coordinate coefficients

DO 31 N= 1,2
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C

C

C

Quadratic interpolation function (corners and midnodes)

A2(N)= 4.*XG(CQ

B2(N)= 2.*XG(CQ

C2(N)= -2.*XG(CQ

D2 (N) = XG (CQ

* +XG (CQ

E2 (N) = 2. *XG (CQ (NE,

* -4. *XG (CQ (NE,

F2 (N) = 2. *XG (CQ (NE,

* -4. *XG (CQ (NE,

G2 (N) = -I.*XG(CQ(NE,

* +XG (CQ (NE,
* -2. *XG (CQ (NE,

H2 (N) = -i. *XG (CQ (NE,

* +XG (CQ (NE,

* +2. *XG (CQ (NE,

P2 (N) = XG (CQ (NE,

* +XG (CQ (NE,
* -2. *XG (CQ (NE,

* -2. *XG (CQ (NE,

* +4. *XG (CQ (NE,

(NE, 9),N)

(NE, 4) ,N) -2. *XG (CQ (NE, 8) ,N)

(NE, 2 ),N) +2. *XG (CQ (NE, 6 ),N)

(NE, i) ,N)- XG (CQ (NE, 3) ,N)

(NE, 5),N)- XG (CQ (NE, 7),N)

4) ,N) +2. *XG (CQ (NE, 8) ,N)

9) ,N)

2 ),N) +2. *XG (CQ (NE, 6), N)

9) ,N)

i) ,N)+ XG (CQ (NE, 3),N)

5) ,N)- XG (CQ (NE, 7),N)
4 ),N) +2. *XG (CQ (NE, 8), N)

i) ,N)- XG (CQ (NE, 3),N)

5) ,N)+ XG (CQ (NE, 7) ,N)

2) ,N) -2. *XG (CQ (NE, 6) ,N)

i) ,N)+ XG (CQ (NE, 3),N)

5) ,N)+ XG (CQ (NE, 7) ,N)
2) ,N) -2. *XG (CQ (NE, 4) ,N)

6 ),N) -2. *XG (CQ (NE, 8), N)

9) ,N)

31 CONTINUE

DO 30 R= I,NPOINT

DO 30 S= I,NPOINT

ETI= XI (R, i)

ET2= XI (S, 2)

Coefficients used in Jacobian and derivative calculations

DO 38 P= 1,2

A(P) = B2 (P) +D2 (P) *ET2+2. *E2 (P) *ETI+G2 (P) *ET2**2

* +2. *H2 (P) *ETI*ET2 +2. *P2 (P) *ETI*ET2**2

B(P) = C2 (P) +D2 (P) *ETI+2. *F2 (P) *ET2+H2 (P) *ETI**2

* +2. *G2 (P) *ETI*ET2 +2. *P2 (P) *ET2*ETI**2

ADI (P) = 2. * (E2 (P) +H2 (P) *ET2+P2 (P) *ET2**2)

AD2 (P) = D2 (P) +2. *G2 (P) *ET2+2. *H2 (P) *ETI+4. *P2 (P) *ETI*ET2

BDI(P)= AD2 (P)

BD2 (P) = 2. * (F2 (P) +G2 (P) *ETI+P2 (P) *ETI**2)
38 CONTINUE

C

C Jacobian determinant: quadratic variation
C

DETJQ= 0.
DO 33 N= 1,2

DO 33 M= 1,2

IF (M.EQ.N) GOTO 33

DETJQ= EPS (M,N)/16. *A(M) *B(N) +DETJQ
33 CONTINUE

C

C

C

C

WRSJQ= W(R)*W(S)*DETJQ

Inverse Jacobian tensor
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34

DO 34 I= 1,2

DO 34 K=_1,2

IF (I.EQ.I) THEN
P= 2

SIGN= I.

ELSE

P= 1

SIGN= -i.

END IF

IF (K.EQ.I) THEN

JINV(I,K) = SIGN/4./DETJQ*B(P)
ELSE

JINV (I,K) = -i. *SIGN/4./DETJQ*A (P)
END IF

CONTINUE

C

C Coefficient Tensors

C

C Quadratic isoparametric
C

C

C

functions only

DO 35 N= I,NLNQ

DO 35 M= I,NLNQ

EA(NE,N,M): EA(NE,N,M)+ WRSJQ*PHIQ(N, ETI,ET2)*PHIQ(M, ETI,ET2)

SI= 0.

DO 36 I= 1,2

36 SI=SI+DPDXQ(N,I,ETI,ET2,NE)*DPDXQ(M,I,ETI,ET2,NE)

EC(NE,N,M): EC(NE,N,M)+ WRSJQ*SI
C

DO 35 I= 1,2

DO 37 J= 1,2

37 EQ(NE,N,J,M,I)= EQ(NE,N,J,M,I)+WRSJQ*DPDXQ(N,J,ETI,ET2,NE)*

> DPDXQ(M,I,ETI,ET2,NE)

DO 35 L= I,NLNQ
C

EB(NE,N,L,M,I)= EB(NE,N,L,M,I)+

* WRSJQ*PHIQ(N, ETI,ET2)*PHIQ(L, ETI,ET2)*DPDXQ(M,I,ETI,ET2,NE)
C

35 CONTIh_JE

C 4th-order isoparametric functions only

IF (NTN.NE.9) THEN

DO 70 N= I,NTN

DO

>

>

274

274 M= I,NLNQ

IF (NTN.EQ.15) THEN

EA24V(ECL(NE, 2),M,N)= EA24V(ECL(NE, 2),M,N)+

WRSJQ*PHIQ(M, ETI,ET2)*PHI24(N,ETI,ET2,NE)

ELSE

EA44V(ECL(NE,2),M,N)= EA44V(ECL(NE,2),M,N)+

WRSJQ*PHIQ(M, ETI,ET2)*PHI4(N,ETI,ET2)
END IF

CONTINUE
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C

C

C

DO 70 M= I,NTN

IF (NTN.EQ.15) THEN

EA24T(ECL(NE,2) ,M,N)= EA24T(ECL(NE,2),M,N)+

> WRSJQ* PHI24 (M,ETI, ET2, NE) *PHI24 (N, ETI, ET2, NE)
ELSE

EA44T(ECL(NE,2) ,M,N)= EA44T(ECL(NE,2) ,M,N)+

> WRSJQ* PHI4 (M, ETI, ET2 )*PHI4 (N, ETI, ET2 )
END IF

71

72

SI= 0.

IF (NTN.EQ.15) THEN

DO 71 I= 1,2

SI=SI+DPDX24 (N, I,ETI, ET2, NE) *DPDX24 (M, I, ETI, ET2, NE)

EC24 (ECL (NE, 2 ),N, M) = EC24 (ECL (NE, 2 ),N, M) + WRSJQ*SI
ELSE

DO 72 I= 1,2

SI=SI+DPDX4 (N, I,ETI, ET2, NE) *DPDX4 (M, I,ETI, ET2, NE)

EC44 (ECL(NE,2) ,N,M)= EC44 (ECL(NE, 2) ,N,M)+ WRSJQ*SI
END IF

IF (NTN. EQ. 15 ) THEN

DO 73 I= 1,2

DO 73 L= I,NLNQ

73 EB24(ECL(NE,2),N,L,M,I)= EB24(ECL(NE,2),N,L,M,I)+

* WRSJQ* PHI24 (N, ETI, ET2, NE) *PHIQ (L, ETI, ET2 )*
* DPDX24 (M, I,ETI, ET2,NE)

ELSE

DO 74 I= 1,2

DO 74 L= I,NLNQ

74 EB44(ECL(NE,2),N,L,M,I)= EB44(ECL(NE,2),N,L,M,I)+

* WRSJQ* PHI4 (N,ETI, ET2 )*PHIQ (L, ETI, ET2 )*
* DPDX4 (M, I,ETI, ET2, NE)

END IF

70 CONTINUE

END IF

Mixed quadratic and linear functions

DO 41 N= I,NLN

DO 41 M= I,NLNQ

DO 41 I= 1,2

IF (ECL(NE, I).EQ.0) THEN

ED(ECL(NE,2),M,N,I)=ED(ECL(NE,2),M,N,I)+

* WRSJQ*PHIQ(M, ETI,ET2)*DPDXL(N,I,ETI,ET2,NE)
EF(ECL(NE,2),N,M,I)=EF(ECL(NE,2),N,M,I)+

* WRSJQ*PHIL(N, ETI,ET2)*DPDXQ(M,I,ETI,ET2,NE)

ELSE IF (ECL(NE, I).EQ.I) THEN

IF (IPRESS.EQ.I) THEN

EDLQ (ECL (NE, 2) ,M,N, I) =EDLQ (ECL (NE, 2) ,M,N, I)+

* WRSJQ*PHIQ(M, ETI,ET2)*DPDXLQ(N,I,ETI,ET2,NE)

EFLQ(ECL(NE,2),N,M,I)=EFLQ(ECL(NE,2),N,M,I)+

* WRSJQ*PHILQ(N, ETI,ET2,NE)*DPDXQ(M,I,ETI,ET2,NE)
ELSE
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END IF

ELSE

IF (IPRESS.EQ.I) THEN

Ff)Q (ECL (NE, 2 ) ,M,N, I) =EDQ (ECL (NE, 2)

* WRSJQ* PHIQ (M, ETI, ET2 ) *DPDXQ (N, I,

EFQ (ECL (NE, 2) ,N,M, I)=EFQ (ECL (NE, 2)

* WRSJQ* PHIQ (N, ETI, ET2 ) *DPDXQ (M, I,

ELSE

EDQ (ECL(NE, 2) ,M,N, I) =EDQ (ECL (NE, 2)

* WRSJQ* PHIQ (M, ETI, ET2 ) *DPDXL (N, I,

EFQ (ECL (NE, 2 ), N, M, I ) =EFQ (ECL (NE, 2 )

* WRSJQ* PHIL (N, ETI, ET2 ) *DPDXQ (M, I,

END IF

END IF

EDLQ (ECL (NE, 2), M,N, I) :EDLQ (ECL (NE, 2 ) ,M,N, I) +

WRSJQ* PHIQ (M, ETI, ET2 )*DPDXL (N, I, ETI, ET2, NE)

EFLQ {ECL (NE, 2) ,N,M, I) =EFLQ {ECL (NE, 2) ,N,M, I)+

WRSJQ* PHIL (N, ETI, ET2 )*DPDXQ (M, I, ETI, ET2, NE)

,M,N,I)+

ETI,ET2,NE)

,N,M,I)+

ETI,ET2,NE)

,M,N,I)+

ETI,ET2,NE)

,N,M,I)+

ETI,ET2,NE)

DO 41 L= I,NLNQ

DO 41 J= 1,2

IF (ECL(NE, I}.EQ.0) THEN

EG (ECL (NE, 2 ),N, L, I, M, J) :EG (ECL (NE, 2 ), N, L, I, M, J) +

* WRSJQ* PHIL (N, ETI, ET2 )*DPDXQ (L, I, ETI, ET2, NE) *

* DPDXQ (M, J, ETI, ET2, NE)

EH (ECL (NE, 2) ,N, L,M, I,J) =EH (ECL (NE, 2) ,N, L,M, I,J) +

* WRSJQ*PHIL (N, ETI, ET2 )*PHIQ (L, ETI, ET2) *

* DPDXDYQ (M, I, J, R, S, NE)

ELSE IF (ECL(NE, i) .EQ. i) THEN

IF (IPRESS.EQ.I) THEN

EGLQ (ECL (NE, 2) ,N,L, I, M, J) =EGLQ (ECL (NE, 2 ) ,N,L, I,M, J} +

* WRSJQ* PHILQ (N, ETI, ET2, hiE)*DPDXQ (L, I, ETI, ET2, NE) *

* DPDXQ (M, J, ETI, ET2, NE)

EHLQ (ECL (NE, 2) ,N, L,M, I,J) :EHLQ (ECL (NE, 2) ,N, L,M, I,J) +

* WRSJQ* PHILQ (N, ETI, ET2, NE) *PHIQ (L, ETI, ET2 ) *

* DPDXDYQ (M, I, J, R, S,NE)

ELSE

EGLQ (ECL (NE, 2 ), N, L, I, M, J) =EGLQ (ECL (NE, 2 ), N, L, I, M, J) +

* WRSJQ* PHIL (N, ETI, ET2) *DPDXQ (L, I, ETI, ET2, NE) *

* DPDXQ (M, J, ETI, ET2, NE)

EHLQ (ECL (NE, 2) ,N, L, M, I, J) =EHLQ (ECL(NE, 2) ,N, L,M, I, J) +

* WRSJQ* PHIL (N, ETI, ET2 )* PHIQ (L, ETI, ET2 )*

* DPDXDYQ (M, I, J,R, S,NE]

END IF

ELSE

IF (IPRESS.EQ.I) THEN

EGQ (ECL (NE, 2),N, L, I,M, J)=EGQ (ECL (NE, 2),N,L, I,M, J) +

* WRSJQ* PHIQ (N, ET i, ET2 )*DPDXQ (L, I, ET i, ET2, NE) *

* DPDXQ (M, J, ETI, ET2, NE)

EHQ (ECL (NE, 2) ,N, L,M, I,J) =EHQ (ECL (NE, 2) ,N, L,M, I,J)+

* WRSJQ* PHIQ (N, ETI, ET2 )*PHIQ (L, ETI, ET2 ) *

* DPDXDYQ (M, I, J, R, S, NE)

ELSE

EGQ (ECL (NE, 2),N, L, I,M, J)=EGQ (ECL(NE, 2),N, L, I,M,J) +

* WRSJQ* PHIL (N, ETI, ET2 )*DPDXQ (L, I, ETI, ET2, NE) *

* DPDXQ (M, J, ETI, ET2, NE)

EHQ (ECL (NE, 2) ,N, L,M, I,J) =EHQ (ECL (NE, 2) ,N, L,M, I,J)+
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* WRSJQ* PHIL (N, ETI, ET2 )*PHIQ (L, ETI, ET2 )*

* DPDXDYQ (M, I, J,R, S,NE)

END IF

END IF

41 CONTINUE

C

C

39

DO 30 N= I,NLN

DO 30 M= I,NLN

SI= 0.

DO 39 I= 1,2

IF (ECL(NE, I).EQ.0) THEN

SI=SI+DPDXL (N, I,ETI, ET2, NE) *DPDXL (M, I,ETI, ET2, NE)

ELSE IF (ECL(NE, I).EQ.I) THEN

IF (IPRESS.EQ.I) THEN

SI=SI+DPDYJ_Q (N, I,ETI, ET2, NE) *DPDXLQ (M, I, ETI, ET2, NE)
ELSE

SI=SI+DPDXL (N, I,ETI, ET2, NE) *DPDXL (M, I, ETI, ET2, NE)
END IF

ELSE IF (ECL(NE, I).EQ.2) THEN

IF (IPRESS.EQ.I) THEN

SI=SI+DPDXQ (N, I,ETI, ET2, NE) *DPDXQ (M, I,ETI, ET2, NE)

ELSE

SI=SI+DPDXL (N, I,ETI, ET2, NE) *DPDXL (M, I,ETI, ET2, NE)

END IF
END IF

CONTINUE

IF (ECL(NE, I).EQ.0) THEN

EE (ECL (NE, 2 ),N, M) =EE (ECL (NE, 2 ),N, M) +WRSJQ*SI

ELSE IF (ECL(NE, I).EQ.I) THEN

EELQ (ECL (NE, 2) ,N,M) =EELQ (ECL (NE, 2) ,N,M) +WRSJQ*SI

ELSE IF (ECL(NE, i) .EQ.2) THEN

EEQ (ECL (NE, 2 ),N, M) =EEQ (ECL (NE, 2 ),N, M) +WRSJQ*SI

END IF

30 CONTINUE

C Pressure boundary tensor formulation

NE= 0

DO 50 NES= I,NESURF(4)
NE= NE+I

C Coordinate coefficients

DO 51 N= 1,2

C Quadratic interpolation function (corners and midnodes)

A2(N)=

B2(N)=
C2(N)=

D2(N)=

E2 (N) =

F2 (N)=

4. *XG (CQ (NE, 9) ,N)
2. *XG (CQ (NE, 4 ),N) -2. *XG (CQ (NE, 8 ),N)

-2. *XG (CQ (NE, 2 ),N) +2. *XG (CQ (NE, 6 ),N)

XG (CQ(NE, i),N)- XG (CQ (NE, 3),N)

+XG (CQ (NE, 5) ,N) - XG (CQ (NE, 7) ,N)

2. *XG (CQ (NE, 4), N) +2. *XG (CQ (NE, 8), N)

-4. *XG (CQ (NE, 9) ,N)

2. *XG (CQ (NE, 2) ,N)+2. *XG (CQ (NE, 6) ,N)
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* -4. *XG (CQ

G2 (N) = --i. *XG (CQ

* +XG (CQ

* -2. *XG (CQ

H2 (N) = -i. *XG (CQ

* +XG (CQ

* +2. *XG (CQ

P2 (N) = XG (CQ

* +XG (CQ

* -2. *XG (CQ

* -2. *XG (CQ

* +4. *XG (CQ

(NE, 9) ,N)
(NE, i),N)+ XG (CQ (NE, 3),N)

(NE, 5),N)- XG (CQ (NE, 7),N)

(NE, 4) ,N) +2. *XG (CQ (NE, 8) ,N)

(NE, i) ,N)- XG (CQ(NE, 3) ,N)

(NE, 5) ,N) + XG (CQ(NE, 7) ,N)
(NE, 2) ,N) -2. *XG (CQ (NE, 6) ,N)

(NE, i) ,N) + XG (CQ(NE, 3) ,N)

(NE, 5),N)+ XG (CQ(NE, 7),N)
(NE, 2), N) -2. *XG (CQ (NE, 4), N)

(NE, 6) ,N) -2. *XG (CQ (NE, 8) ,N)

(NE, 9) ,N)

51 CONTINUE

DO 50 S= I,NPOINT

ETI= XI (s, I)

ET2-- i.

C Coefficients used in 2nd order Jacobian and derivative calculations

DO 53 P= 1,2 ..................................

A(P)= B2(P)+D2(P)*ET2+2.*E2(P)*ETI+G2(P)*ET2**2

* +2.*H2(P)*ETI*ET2 +2.*P2(P)*ETI*ET2**2

B(P)= C2(P)+D2(P)*ETI+2.*F2(P)*ET2+H2(P)*ETI**2
* +2.*G2(P)*ETI*ET2 +2.*P2(P)*ET2*ETI**2

ADI (P) = 2. * (E2 (P) +H2 (P) *ET2+P2 (P) *ET2**2)

AD2 (P) = D2 (P) +2. *G2 (P) *ET2+2. *H2 (P) *ETI+4. *P2 (P) *ETI*ET2

BDI (P) : AD2 (P)

BD2 (P) = 2. * (F2 (P) +G2 (P) *ETI+P2 (P) *ETI**2 )
CONTINUE53

C Jacobian determinant: quadratic variation

DETJQ= 0.

DO 54 N= 1,2
DO 54 M= 1,2

IF (M.EQ.N) GOTO 54

DETJQ= EPS (M, N) /16. *A (M) *B (N)+DETJQ

54 CONTINUE

C Inverse Jacobian tensor

DO 55 I= 1,2

DO 55 K= 1,2

IF (I.EQ.I) THEN
P= 2

SIGN= i.

ELSE

P= 1

SIGN: -i.

END IF

IF (K.EQ.I) THEN
JINV(I,K): SIGN/4./DETJQ*B(P)

ELSE

JINV(I,K)= -I.*SIGN/4./DETJQ*A(P)

END IF
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55 CONTINUE

IF (NE.EQ.I.OR.NE.EQ.NESURF(4)) THEN

X= XI (S, i)

DO 59 N= 1,5

IF (N.EQ.I) THEN

FAC= 2. * (X**4-X**3-. 25"X*'2+. 25"X)

ELSE IF (N.EQ.2) THEN

FAC=-8. * (X**4-. 5*X**3-X**2+. 5*X)

ELSE IF (N.EQ.3) THEN

FAC=I2. * (X**4-1.25"X*'2+. 25)

ELSE IF (N.EQ. 4) THEN

FAC=-8. * (X**4+. 5*X**3-X**2-. 5*X)

ELSE IF (N.EQ.5) THEN

FAC= 2. * (X**4+X**3-. 25"X*'2-. 25"X)

END IF

DO 59 M= 1,25

SAQ2 (ECL (NE, 2) ,N,M) = SAQ2 (ECL (NE, 2) ,N,M) +

> W(S) *FAC*DPDX4 (M, i, ETI, ET2, NE)/6.

59 CONTINUE

END IF

DO 50 N= 1,3

IF (N.EQ.I) FAC= XI(S,I)*(XI(S,I)-I.)

IF (N.EQ.2) FAC=-2.*(XI(S,I)**2-1.)

IF (N.EQ.3) FAC= XI(S,I)*(XI(S,I)+I.)

DO 50 M= I,NLNQ

SAQ (NES, N, M) = SAQ (NES, N, M) +

> W(S) *FAC*DPDXQ (M, I, ETI, ET2, NE)/4.

50 CONTINUE

RETURN

END

H. Function EPS

FUNCTION EPS (M, N)

C 2-index permutation symbol. Outputs

C = 1 if m=l and n=2

C =-i if m=2 and n=l

C = 0 if m=n

C

C

IF (M.EQ.I.AND.N.EQ.2) THEN
A= i.

ELSE IF (M.EQ.2.AND.N.EQ.I)

A= -I.

ELSE

A= 0.

END IF

EPS= A

RETURN

THEN
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_qD

I. Function DPDXL

FUNCTION DPDXL(N, I,ETI,ET2,NE)

C Calculates first order derivative of first order curved isoparameteric

C*********w***, **.***********w**w***w*** **************w.w* ***********WW*

COMMON/VLIN/AI (2), B1 (2) ,CI (2) ,DI (2),XINL(4,2) ,XINLQ (6,2,2), DETJL

COMMON/VQUAD/

* A2 (2) ,B2 (2) ,C2 (2) ,D2 (2) ,E2 (2) ,F2 (2) ,G2 (2) ,H2 (2), P2 (2),

* XINQ(9,2) ,DETJQ, JINV(2,2) ,A(2) ,B(2) ,ADI (2) ,AD2 (2) ,BDI (2) ,BD2 (2)

REAL JINV

ENI: XINL (N, I)

EN2= XINL (N,2)

CN-- .25
CNI= ENI+ENI*EN2*ET2

CN2= EN2+ENI*EN2*ETI

DPDXL= CN* (CNI*JINV(I, i)+CN2*JINV(I, 2) )

RETURN

END

J. Function DPDXLQ

FUNCTION DPDXLQ (N, I, ETI, ET2 ,NE)

C Calculates first order derivative of second order isoparameteric function

************************************************************************

COMMON/VLIN/AI(2),BI(2),CI(2),DI(2),XINL(4,2),XINLQ(6,2,2),DETJL

COMMON/VQUAD/

* A2 (2) ,B2 (2) ,C2 (2) ,D2 (2) ,E2 (2) ,F2 (2) ,G2 (2) ,H2 (2), P2 (2),

* XINQ(9,2), DETJQ, JINV(2,2) ,A(2) ,B(2),ADI (2) ,AD2 (2), BDI (2) ,BD2 (2)

COMMON/SURFTYPE/ NESURF(4)

REAL JINV

IF (NE.LE.NESURF(4)) THEN

ENI= XINLQ (N, i,2)

EN2: XINLQ (N,2,2)

IF (N.EQ.3.0R.N.EQ.6) THEN

CN= .5

CNI= ENI* (I.-ET2**2)
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CN2= -2. *ET2* (ENI*ETI+I.)

ELSE

CN: .25

CNI= ENI* (ET2**2+ET2*EN2)

CN2= (2.*ET2+EN2) * (ENI*ETI+I.)
END IF

ELSE

ENI= XINLQ (N, I, i)
EN2= XINLQ(N,2, i)

IF (N.EQ.2.0R.N.EQ.5) THEN

CN= .5

CNI= -2. *ETI* (EN2*ET2+I.)

CN2= EN2* (I.-ETI**2)

ELSE

CN= .25

CNI= (2.*ETI+ENI) * (EN2*ET2+I.)

CN2= EN2* (ETI**2+ETI*ENI)

END IF

END IF

DPDXLQ= CN* (CNI*JINV(I, i) +CN2*JINV(I, 2) )

RETURN

END

IC Function DPDXQ

FUNCTION DPDXQ (N, I, ETI, ET2,NE)

CW*WWWWWWWWWWWWWWWWWWWWWWWWWW*WW*WWWWWWWWWWW **WWWWWWWWWW*WWWWWWWWWWWWWWW

C Calculates first order derivative of second order isoparameteric

C function
CWWWWWWW*WWWWW***W*WWWWWWW*WW*****WWWW*** **W*W**WWWW**WWWWWWWWWWWWWWW*WW

COMMON/VQUAD/
* A2 (2) ,B2 (2) ,C2 (2) ,D2 (2) ,E2 (2) ,F2 (2) ,G2 (2) ,H2 (2), P2 (2),

* XINQ(9,2) ,DETJQ, JINV(2,2),A(2),B(2),ADI(2) ,AD2 (2),BDI (2),BD2 (2)

REAL JINV

ENI= XINQ(N, i)

EN2 = XINQ (N, 2)

IF (N.EQ.9) THEN
CN= -2.

CNI= ETI* (I.-ET2**2)

CN2= ET2* (I.-ETI**2)

ELSE IF (N.EQ.2.0R.N.EQ.6) THEN

CN= EN2/2.

CNI= -2.*ETI*ET2* (EN2*ET2+I.)

CN2= (i. -ETI**2) * (2. *EN2*ET2+I. )

ELSE IF (N.EQ.4.OR.N.EQ.8) THEN

CN= ENI/2.

CNI= (I.-ET2**2)* (2.*ENI*ETI+I.)
CN2= -2.*ETI*ET2* (ENI*ETI+I.)

ELSE
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C

C

CN= ENI*EN2/4.

CNI= ET2* (i. +EN2*ET2) * (2. *ENI*ETI+I. )

CN2= ETI* (i. +ENI*ETI) * (2. *EN2*ET2+I. )
END IF

DPDXQ= CN* (CNI*JINV(I, I)+CN2*JINV(I,2) )

RETURN

END

L. Function DPDX24

FUNCTION DPDX24 (N, I,ETI, ET2, NE)

COMMON/VLIN/AI (2),BI (2),CI (2) ,DI (2),XINL (4,2),XINLQ (6,2,2), DETJL

COMMON /VQUAD /

* A2 (2) ,B2 (2) ,C2 (2) ,D2 (2) ,E2 (2) ,F2 (2) ,G2 (2) ,H2 (2) ,P2 (2),
* XINQ (9,2), DETJQ, JINV(2,2) ,A(2) ,B(2) ,ADI (2) ,AD2 (2) ,BDI (2) ,BD2 (2)

COMMON/SURFTYPE/ NESURF (4)

REAL JINV

IF (NE.LE.NESURF(4)) THEN

IF (N.EQ. i) THEN

IGROUP= 1

C= .083333333333 I = 1/12
ENI= -1.

EN2= -1.

ELSE IF (N.EQ.2) THEN
IGROUP= 2

C= .1666666666667 ! = 1/6
ENI= 0.

EN2= -I.

ELSE IF (N.EQ.3) THEN
IGROUP= 1

C= .083333333333 ! = 1/12
ENI-- 1.

EN2= -i.

ELSE IF (N.EQ.4) THEN
IGROUP= 1

C=-1.333333333333 ! = -8/6

ENI= 1.

EN2= -° 5

ELSE IF (N.EQ.5) THEN
IGROUP= 3

C= 2. ' = 2

ENI= i.

EN2= 0.

ELSE IF (N.EQ.6) THEN
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IGROUP= 1
C=-1.333333333333 ! = -8/6

ENI= I.

EN2= .5

ELSE IF (N.EQ.7) THEN
IGROUP= 1

C= .083333333333 ! = 1/12
ENI= i.

EN2= i.

ELSE IF (N.EQ.8)THEN

IGROUP= 2

C= .1666666666667 ! = 1/6

ENI= 0.
EN2= i.

ELSE IF (N.EQ.9) THEN
IGROUP= 1

C= .083333333333 ' = 1/12

ENI= -i.
EN2= i.

ELSE IF (N.EQ.10) THEN
IGROUP= 1

C=-1.333333333333 ' = -8/6

ENI= -I.

EN2= .5

ELSE IF (N.EQ.II) THEN
IGROUP= 3

C= 2. != 2

ENI= -i.

EN2= 0.

ELSE IF (N.EQ.12) THEN
IGROUP= 1

C=-1.333333333333 ! = -8/6

ENI= -1.

EN2=-.5

ELSE IF (N.EQ.13) THEN
IGROUP= 2

C=-2.6666666666667 ! = -8/3

ENI= 0.

EN2= -. 5

ELSE IF (N.EQ. 14) THEN

IGROUP= 4

C=4. '=4

ENI= 0.
EN2= 0.

ELSE IF (N.EQ.15) THEN
IGROUP= 2

C=-2.6666666666667 ' = -8/3

ENI= 0.
EN2= .5

END IF

ELSE

IF (N.EQ. i) THEN
IGROUP= 1

C= .08333333333333

ENI= -i.

EN2= -i.

: 1/12
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ELSE IF (N.EQ.2) THEN

IGROUP= 1
C=-1.33333333333333 ! = -8/6

ENI= -. 5 i
EN2= -i.

ELSE IF (N.EQ.3) THEN
IGROUP= 3
C= 2. I = 2

ENI= 0,

EN2= -i,

ELSE IF (N.EQ.4) THEN

IGROUP= 1

C=-1.33333333333333 ' = -8/6

ENI= ,5
EN2: -i.

ELSE IF (N.EQ.5) THEN
IGROUP= 1

C= .08333333333333 ' = 1/12

ENI= I.
EN2= -i,

ELSE IF (N.EQ.6) THEN z
IGROUP= 2 z
C= .16666666666667 ' : -8/6

ENI= i,

EN2= 0.

ELSE IF (N.EQ.7) THEN

IGROUP= 1

C= .08333333333333 ! = 1/12
ENI= i.

EN2= i,

ELSE IF (N,EQ.8) THEN
IGROUP= 1

C=-1.33333333333333 ' = -8/6

ENI= .5
EN2= i,

ELSE IF (N.EQ.9) THEN
IGROUP: 3

C= 2. i = 2

ENI= 0.

EN2= l,

ELSE IF (N.EQ.10) THEN
IGROUP= 1

C=-1.33333333333333 ' = -8/6

ENI= -. 5 =-_

EN2= i,

ELSE IF (N.EQ.II) THEN
IGROUP= 1

C= .08333333333333 ! = 1/12

ENI= -i, _
EN2= i.

ELSE IF (N.EQ.12) THEN
IGROUP= 2

C= .16666666666667 ! = 1/6 --

ENI= -I.

EN2= 0.

ELSE IF (N.EQ.13) THEN
IGROUP= 2 _

C:-2.6666666666667 ' : -8/3
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C

C

_i= -.5

EN2= 0.

E_E IF (N._.I4) THEN
IGROUP= 4

C=4. !=4

_I= 0.

EN2= 0.

ELSE IF (N._.I5) THEN
IGROUP= 2

C=-2.6666666666667 ' = -8/3

ENI= °5

EN2= 0.

END IF

END IF

IF (NE.LE.NESURF(4)) THEN
ENA= EN2

ENB= ENI
ETA= ET2

ETB= ETI

CJA= JINV(I, 2

CJB= JINV(I, 1

ELSE

ENA= ENI
_qB= EN2

ETA= ETI

ETB= ET2

CJA= JINV(I, 1

CJB= JINV(I, 2

END IF

IF (IGROUP. EQ. I) THEN

CNA= (16.*ENA**2*ETA**3+ 12.*ENA**3*ETA**2- 2.*ETA- ENA)*

> (ETB**2+ ENB*ETB)

CNB= (4.*ENA**2*ETA**4+ 4.*ENA**3*ETA**3- ETA**2- ENA*ETA)*

> (2. *ETB+ ENB)

ELSE IF (IGROUP. EQ. 2) THEN

CNA= (16.*ENA**2*ETA**3+ 12.*ENA**3*ETA**2- 2.*ETA- ENA)*

> (i.- ETB**2 )
CNB= (4.*ENA**2*ETA**4+ 4.*ENA**3*ETA**3- ETA**2- ENA*ETA)*

> (-2. *ETB)

ELSE IF (IGROUP. EQ. 3 ) THEN
CNA= (4. *ETA**3- 2.5*ETA) *

> (ETB**2+ ENB*ETB)

CNB= (ETA**4- 1.25*ETA**2+ .25)*

> (2. *ETB+ ENB)

ELSE IF (IGROUP. EQ. 4) THEN

CNA= (4.*ETA**3- 2.5*ETA)*(1.- ETB**2)

CNB= (ETA**4- 1.25*ETA**2+ .25)* (-2.*ETB)
END IF

DPDX24= C* (CNA*CJA+CNB*CJB)

RETURN
HND

_ND
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M. FunctionDPDX4

FUNCTION DPDX4 (N, I,ETI,ET2,NE)

C Calculates first order derivative of fourth order isoparameteric
C function

COMMON/VQUAD/

* A2 (2) ,B2 (2) ,C2 (2) ,D2 (2) ,E2 (2) ,F2 (2) ,G2 (2) ,H2 (2), P2 (2),

* XINQ(9,2) ,DETJQ, JINV(2,2) ,A(2) ,B(2) ,ADI (2) ,AD2 (2) ,BDI (2) ,BD2 (2)

REAL JINV

IF (N.EQ.I) THEN
IGROUP= 1

C= .027777777778 i = 1/36
ENI= -I.

EN2= -i.

ELSE IF (N.EQ.2) THEN
IGROUP= 1

C= .444444444444 ! = -8/18

ENI= -.5

EN2= -I.

ELSE IF (N.EQ.3) THEN
IGROUP= 2

C= .6666666666667 ' = 2/3

ENI= 0.

EN2= -I.

ELSE IF (N.EQ.4) THEN
IGROUP= 1

C= -.444444444444 ' = -8/18
ENI= .5

EN2= -1.

ELSE IF (N.EQ.5) THEN
IGROUP= 1

C= .027777777778 ! = 1/36
ENI= i.

EN2=-I.

ELSE IF (N.EQ.6) THEN
IGROUP= 1

C= -.444444444444 ! = -8/18
ENI= I.

EN2= -. 5

ELSE IF (N.EQ.7) THEN
IGROUP= 3

C= .6666666666667 ' = 2/3

ENI= i.

EN2= 0.

ELSE IF (N.EQ.8) THEN
IGROUP= 1

C= -.444444444444 ' = -8/18

ENI= i.

EN2= .5

ELSE IF (N.EQ.9) THEN
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IGROUP= 1

C= 027777777778 ! = 1/36

ENI= i.

EN2= i.

ELSE IF (N.EQ.10) THEN
IGROUP= 1

C= - 444444444444 i = -8/18

ENI= .5

EN2= i.

ELSE IF (N.EQ. II) THEN
IGROUP= 2

C= 6666666666667 ! = 2/3

ENI= 0.

EN2= i.

ELSE IF (N.EQ.12) THEN
IGROUP= 1

C= - 444444444444 ! = -8/18

ENI= -. 5

EN2= 1.

ELSE IF (N.EQ.13) THEN
IGROUP= 1

C= 027777777778 ' = 1/36

ENI= -i.

EN2= i.

ELSE IF (N.EQ.14) THEN
IGROUP= 1

C= - 444444444444 ! = -8/18

ENI= -1.

EN2= .5

ELSE IF (N.EQ.15) THEN
IGROUP= 3

C= 6666666666667 ! = 2/3

ENI= -I.

EN2= 0.

ELSE IF (N.EQ.16) THEN

IGROUP= 1

C= -.444444444444 ' = -8/18
ENI= -I.

EN2= -.5

ELSE IF (N.EQ.17) THEN
IGROUP= 1

C= 7.111111111111 ' = 64/9
ENI= -. 5

EN2= -.5

ELSE IF (N.EQ.18) THEN
IGROUP= 2

C=-10.666666666667 ! = -32/3

ENI= 0.
EN2=-.5

ELSE IF (N.EQ.19) THEN
IGROUP= 1

C= 7.111111111111 ! = 64/9
ENI= .5

EN2=-.5

ELSE IF (N.EQ.20) THEN
IGROUP= 3

C=-I0.666666666667 ! = -32/3

ENI= .5
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C

EN2= 0.

ELSE IF (N.EQ.21) THEN
IGROUP= 1

C= 7.111111111111 ! =

ENI= .5

EN2= .5

ELSE IF (N.EQ.22) THEN
IGROUP= 2

C=-10. 666666666667

ENI= 0.

EN2= .5

ELSE IF (N.EQ.23) THEN
IGROUP= 1

C= 7.111111111111 ! =

ENI= -. 5

EN2= .5

ELSE IF (N.EQ.24) THEN
IGROUP= 3

C=-I0. 666666666667

ENI= -. 5

EN2= 0.

ELSE IF (N.EQ.25) THEN
IGROUP= 4

C= 16.

ENI= 0.
EN2= 0.

END IF

64/9

i = -32/3

64/9

' = -32/3

IF (IGROUP.EQ.I) THEN

CNI= (16.*ENI**2*ETI**3+ 12.*ENI**3*ETI**2- 2.*ETI- ENI)*

> (4.*EN2**2*ET2**4+ 4.*EN2**3*ET2**3- ET2**2- EN2*ET2)

CN2= (4.*ENI**2*ETI**4+ 4.*ENI**3*ETI**3- ETI**2- ENI*ETI)*
> (16.*EN2**2*ET2**3+ 12.*EN2**3*ET2**2- 2.*ET2- EN2)

ELSE IF (IGROUP.EQ.2) THEN

CNI= (4.*ETI**3- 2.5*ETI)*

> (4.*EN2**2*ET2**4+ 4.*EN2**3*ET2**3- ET2**2- EN2*ET2)
CN2= (ETI**4- 1.25"ETI*'2+ .25)*

> (16.*EN2**2*ET2**3+ 12.*EN2**3*ET2**2- 2.*ET2- EN2)

ELSE IF (IGROUP.EQ.3) THEN

CNI= (16.*ENI**2*ETI**3+ 12.*ENI**3*ETI**2- 2.*ETI- ENI)*

> (ET2**4- 1.25"ET2"'2+ .25)

CN2= (4.*ENI**2*ETI**4+ 4.*ENI**3*ETI**3- ETI**2- ENI*ETI)*

> (4.*ET2"'3- 2.5"ET2)

ELSE IF (IGROUP.EQ.4) THEN
CNI= (4.*ETI**3- 2.5*ETI)*

> (ET2**4- 1.25"ET2"'2+ .25)

CN2= (ETI**4- 1.25"ETI*'2+ .25)*

> (4.*ET2"'3- 2.5"ET2)
END IF

DPDX4= C*(CNI*JINV(I,I)+CN2*JINV(I,2))

RETURN
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FUNCTION DPDXDYQ (N, I,J,NXI, NETA, NE )

CWWWWWWWW*WW*WW*WW*W********W**WWW***WW*W*WWWWWWWWW*WW*WW*W*WWWWWWW*WW**

C Calculates second order derivative of second order isoparameteric

C function

CWWWWWWWWWWWWWW*WWWWWWW*WWWWWWWWWWW*WWWWWWWWWWWW*WWWWWWWWWW*WWWWWW*WWWW*

C
COMMON/VINTEG/XI(10,2),W(10)

C

C

C

C

COMMON/VQUAD/

* A2 (2) ,B2 (2) ,C2 (2) ,D2 (2) ,E2 (2) ,F2 (2) ,G2 (2) ,H2 (2), P2 (2),

* XINQ (9,2), DETJQ, JINV(2,2) ,A(2) ,B(2) ,ADI (2) ,AD2 (2) ,BDI (2) ,BD2 (2)

INTEGER P

RF_2_LJINV

ENI= XINQ (N, 1 )

EN2= XINQ (N, 2 )

ETI= XI (NXI, i)
ET2= XI (NETA, 2)

IF (I.EQ.I) THEN
EIP= i.

P= 2

ELSE
EIP= -i.

P= 1

END IF

IF (N.EQ.9) THEN
CN= -2.

CNI= ETI* (i. -ET2**2)

CN2= ET2* (I.-ETI**2)
DNI= i. -ET2**2

DN2= -2. *ETI*ET2

DN3= DN2
E_4= i. -ETI**2

ELSE IF (N.EQ.2.0R.N.EQ.6) THEN

CN= EM2/2.
CNI= -2.*ETI*ET2* (EN2*ET2+I.)

CN2= (I.-ETI**2)* (2.*EN2*ET2+I.)

I1ql= -2. *ET2* (EN2*ET2+I.)

E_2= -2. *ETI* (2. *EN2*ET2+I. )

DN3= DN2

E_4= 2. *EN2* (i.-ETI**2)

ELSE IF (N.EQ.4.0R.N.EQ.8) THEN

CN= ENI/2.

CNI= (i. -ET2**2) * (2. *ENI*ETI+I. )

CN2= -2. *ETI*ET2* (ENI*ETI+I.)

DNI= 2. *ENI* (i.-ET2**2)
E_2= -2. *ET2* (2. *ENI*ETI+I. )

DN3= DN2

E_4= -2. *ETI* (ENI*ETI+I.)
ELSE

CN= ENI*_2/4.

CNI= ET2* (I.+EN2*ET2) * (2. *ENI*ETI+I. )

CN2= ETI* (i. +ENI*ETI) * (2. *EN2*ET2+I. )

E_I= 2. *ENI*ET2* (EN2*ET2+I.)
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C

DN2= (2. *ENI*ETI+I. ) * (2. *EN2*ET2+I. )

DN3= DN�_

DN4: 2. *EN2*ETI* (ENI*ETI+I.)

END IF

DPDXDYQ= EIP*CN/4./DETJQ*

* ( (CNI*BDI (P) -CN2*ADI (P) +B(P) *DNI-A(P) *DN3) *JINV(J, I) +

* (CNI*BD2 (P) -CN2*AD2 (P) +B(P) *DN2-A (P) *DN4) *JINV (J, 2) )

RETURN

END

O. Function PHIL

FUNCTION PHIL (N, ET1, ET2)

C* ******* w'w** w'w******* *** **** ** *******wwwww** *** *** ******** ******* * ***

C Linear isopararaetric function for quadrilateral element

CWW., **, ************************ ,..,************.**... *****.**********w.

COMMON/VLIN/AI (2 ), B1 (2 ), Cl (2), D1 (2 ), XINL (4,2 ), XINLQ (6,2,2 ), DETJL

PHIL= (I. +XINL(N, I) *ETI) * (i. +XINL(N, 2) *ET2)/4.

RETURN

END

P° Function PHILQ

FUNCTION PHII_Q (N, ET1, E_2, NE)

C****WWWWWWWWWWWWWWWWWWWWWWWWWWW*WWW*WWWWWWWWW*WW*WWWWW*WWWW*WWWWWW*****

C Second-order isoparametric function for quadrilateral element

COMMON/VLIN/AI (2) ,BI (2) ,CI (2) ,DI (2) ,XINL (4,2),XINLQ(6,2,2), DETJL

COMMON/VQUAD/

* A2 (2) ,B2 (2) ,C2 (2) ,D2 (2) ,E2 (2) ,F2 (2) ,G2 (2) ,H2 (2), P2 (2),

* XINQ(9,2), DETJQ, JINV(2,2),A(2) ,B(2),ADI (2) ,AD2 (2), BDI (2) ,BD2 (2)

COMMON/SLrRFTYPE/ NESURF(4)

REAL JINV

IF (NE.LE.NESLrRF(4)) THEN

ENI: XINLQ (N, i, 2)

EN2= XINLQ (N, 2,2)

IF (N.EQ.3.0R.N.EQ.6) THEN

X= .5* (i. -ET2**2 )* (I. +ENI*ETI)

ELSE

X= .25"ET2" (ET2+EN2) * (ENI*ETI+I.)

END IF

ELSE
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ENI= XINiQ (N, i, i)

EN2= XINLQ(N,2, i)

IF (N.EQ.2.0R.N.EQ.5) THEN

X= .5* (I.-ETI**2) * (I. +EN2*ET2)
ELSE

X= .25*ETI* (ETI+ENI) * (EN2*ET2+I.)

END IF

END IF

PHILQ= X

Q. Funcdon PHIQ

FUNCTION PHIQ (N, ETI, ET2 )

C FUNCTION PHIQ

C Second-order isoparametric function for quadrilateral element

C

C

COMMON/VQUAD/
* A2 (2) ,B2 (2) ,C2 (2) ,D2 (2) ,E2 (2) ,F2 (2) ,G2 (2) ,H2 (2) ,P2 (2),

* XINQ (9,2), DETJQ, JINV(2,2), A (2), B (2) ,ADI (2), AD2 (2), BDI (2), BD2 (2)

REAL JINV

ENI= XINQ(N, i)

EN2= XINQ (N,2 )

IF (N.EQ.9) THEN

X= (I.-ETI**2)*(I.-ET2**2)

ELSE IF (N.EQ.2.0R.N.EQ.6) THEN
X= .5* (i. -ETI**2) *EN2*ET2* (I.+_2*ET2)

ELSE IF (N. EQ. 4. OR.N. EQ. 8) THEN

X= .5* (i. -ET2**2) *ENI*ETI* (i.+ENI*ETI)
ELSE

X= .25* (i.+ENI*ETI) * (i. +EN2*ET2) *ENI*ETI*EN2*ET2
END IF

PHIQ= X

RETURN

END

R. Function PHI24

FUNCTION PHI24(N,ETI,ET2,NE)

CWWW**WW**WW**WWWWWWWWW*W**WWW**WWWW*WWWWWWWWWWWW**WW*WWWWWWWWWWWWWW*WWW

C Fourth-order isoparametric function for quadrilateral element
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COMMON/VLIN/AI (2), B1 (2), C1 (2), D1 (2), XINL (4,2), XINLQ (6,2,2), DETJL

COMMON/VQUAD/

* A2 (2) ,B2 (2) ,C2 (2) ,D2 (2) ,E2 (2) ,F2 (2) ,G2 (2) ,H2 (2), P2 (2),

* XINQ(9,2),DETJQ,JINV(2,2),A(2),B(2),ADI (2),AD2 (2) ,BDI (2),BD2 (2)

COMMON/SURFTYPE/ NE_ (4 )

REAL JINV

IF (NE.LE.NESURF(4)) THEN

IF (N.EQ.I) THEN
IGROUP= 1

C= .083333333333 ! = 1/12
ENI= -i.

_2= -i.

ELSE IF (N.EQ.2) THEN
IGROUP= 2

C= .1666666666667 ' = 1/6
ENI= 0.

EN2=-i.

ELSE IF (N.EQ.3) THEN

IGROUP= 1

C= .083333333333 _ = 1/12
ENI= i.
EN2= -i.

ELSE IF (N.EQ.4) THEN
IGROUP= 1

C=-1.333333333333 ! = -8/6
ENI= i.

EN2= -.5

ELSE IF (N.EQ.5) THEN
IGROUP: 3

C= 2. [ = 2
ENI= i.

EN2= 0.

ELSE IF (N.EQ.6) THEN
IGROUP= 1

C=-1.333333333333 ' = -8/6

ENI= i.

EN2= .5

ELSE IF (N.EQ.7) THEN
IGROUP= 1

C= .083333333333 ' = 1/12

ENI= i.

EN2= i.

ELSE IF (N.EQ.8) THEN
IGROUP= 2

C= .1666666666667 ! = 1/6

ENI= 0.

EN2= i.

ELSE IF (N.EQ.9) THEN
IGROUP= 1

C= .083333333333 ' = 1/12
ENI= -i.

EN2= 1.
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ELSE IF (N.EQ.10} THEN
IGROUP= 1

C=-1.333333333333 ! = -8/6
ENI=-I.

EN2= .5

ELSE IF (N.EQ.II) THEN
IGROUP= 3

C= 2. ! = 2

ENI= -i.

EN2= 0.

ELSE IF (N.EQ.12) THEN
IGROUP= 1

C=-1.333333333333 ' = -8/6
ENI=-I.

EN2=-.5

ELSE IF (N.EQ.13) THEN

IGROUP= 2

C=-2.6666666666667 J = -8/3

ENI= 0.

EN2= -. 5

ELSE IF (N.EQ.14) THEN

IGROUP= 4

C=4. !=4
ENI= 0.

EN2= 0.

ELSE IF (N.EQ.15) THEN

IGROUP= 2

C=-2.6666666666667 ! = -8/3
ENI= 0.

EN2= .5

END IF

ELSE

IF (N.EQ.I) THEN

IGROUP= 1

C= .08333333333333

ENI= -I.

EN2= -i.

ELSE IF (N.EQ.2) THEN
IGROUP= 1

C=-1.33333333333333

ENI= -° 5

EN2= -I.

ELSE IF (N.EQ.3) THEN
IGROUP= 3

C= 2.

ENI= 0.

EN2= -1.

ELSE IF (N.EQ.4) THEN

IGROUP= 1

C=-1.33333333333333

ENI= .5

EN2= -1.

ELSE IF (N.EQ.5) THEN
IGROUP= 1

C= .08333333333333

ENI= i.

! = 1/12

! =-8/6

! = 2

! =-8/6

! = 1/12
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EN2_ -1,

ELSE IF (N.EQ.6) THEN
IGROUP= 2

C= .16666666666667 ! = 1/6

ENI= i.

EN2= 0.

ELSE IF (N.EQ.7) THEN
IGROUP= 1

C= .08333333333333 ! = 1/12

ENi= 1.

EN2= 1.

ELSE IF (N.EQ.8) THEN

IGROUP= 1

C=-1.33333333333333 ! = -8/6

ENI= .5

EN2= i.

ELSE IF (N.EQ.9) THEN

IGROUP= 3

C=2. ' = 2

ENI= 0.

EN2= I.

ELSE IF (N.EQ.10) THEN
IGROUP= 1

C=-1.33333333333333 ' = -8/6
ENI= -.5

EN2= I.

ELSE IF (N.EQ.II) THEN

IGROUP= 1
C= .08333333333333 ' = 1/12

ENI= -1.

EN2= i.

ELSE IF (N.EQ. 12) THEN
IGROUP= 2

C= .16666666666667 ' = 1/6

ENI= -I.

EN2= 0.

ELSE IF (N.EQ.13) THEN
IGROUP= 2

C=-2.6666666666667 ! = -8/3

ENI= -. 5

EN2= 0.

ELSE IF (N.EQ.14) THEN
IGROUP= 4

C= 4. !=4

ENI= 0.
EN2= 0.

ELSE IF (N.EQ.15) THEN
IGROUP= 2

C=-2.6666666666667 ! = -8/3
ENI= .5

EN2= 0.

END IF

END IF

IF (NE.LE.NESURF(4)) THEN

ENA= _2

ENB= ENI
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C

C

ETA= ET2

ETB= ETI

ELSE

ENA= _i
ENB= EN2

ETA= ETI

ETB= ET2

END IF

IF (IGROUP.EQ.I) THEN

X= C*(4.*ENA**2*ETA**4+ 4,*ENA**3*ETA**3- ETA**2- ENA*ETA)*

> (ETB**2+ENB*ETB)

ELSE IF (IGROUP.EQ.2) THEN

X= C*(4.*ENA**2*ETA**4+ 4.*ENA**3*ETA**3- ETA**2- ENA*ETA)*

> (i.- ETB**2)

ELSE IF (IGROUP.EQ.3) THEN

X= C*(ETA**4- 1.25*ETA**2+ .25)*

> (ETB**2+ ENB*ETB)

ELSE IF (IGROUP.EQ.4) THEN

X= C*(ETA**4- 1.25*ETA**2+ .25)*(1.- ETB**2)
END IF

PHI24= X

RETURN

END

S. Function PHI4

FUNCTION PHI4 (N, ETI, ET2 )

************************************************************************

C Fourth-order isoparametric function for quadrilateral element

C

COMMON/VQUAD/

* A2 (2) ,B2 (2) ,C2 (2) ,D2 (2) ,E2 (2) ,F2 (2) ,G2 (2) ,H2 (2), P2 (2),

* XINQ(9,2) ,DETJQ, JINV(2,2) ,A(2) ,B(2) ,ADI (2) ,AD2 (2) ,BDI (2) ,BD2 (2)
REAL JINV

IF (N.EQ.I) THEN
IGROUP= 1

C= .027777777778

ENl= -I.

EN2= -I.

ELSE IF (N.EQ.2) THEN
IGROUP= 1
C= -.444444444444

ENI= -.5

EN2= -i.

ELSE IF (N.EQ.3) THEN
IGROUP= 2

C= .6666666666667

ENI= 0.
_I_2= -1.

ELSE IF (N.EQ.4) THEN

= 1/36

, = -8/18

! = 2/3
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IGROUP= 1

C= -.444444444444

ENI= .5

EN2= -i.

ELSE IF (N.EQ.5) THEN
IGROUP= 1

C= .027777777778

ENI= i.
_2= -i.

ELSE IF (N.EQ.6) THEN
IGROUP= 1

C= -.444444444444

ENI= I.

EN2=-.5

ELSE IF (N.EQ.7) THEN

IGROUP= 3

C= .6666666666667

ENI= i.

EN2= 0.

ELSE IF (N.EQ.8) THEN
IGROUP= 1

C= -.444444444444

ENI= i.

EN2= .5

ELSE IF {N.EQ.9) THEN
IGROUP= 1
C= .027777777778

ENI= i.

_2= i.

ELSE IF (N.EQ.10) THEN

IGROUP= 1
C= -.444444444444

_1= .5

_2= i.

ELSE IF (N.EQ.II) THEN
IGROUP= 2

C= .6666666666667

ENI= 0.

EN2= i.

ELSE IF (N.EQ.12) THEN
IGROUP= 1

C= -.444444444444

ENI=-.5
EN2= i.

ELSE IF (N.EQ.13) THEN
IGROUP= 1

C= .027777777778

ENI= -i.

_2= I.

ELSE IF (N.EQ.14) THEN
IGROUP= 1

C= -.444444444444

ENI=-I.

EN2= .5

ELSE IF (N.EQ.15) THEN
IGROUP= 3

C= .6666666666667
ENI= -1.

= -8/18

' = 1/36

' = -8/18

' = 2/3

' = -8/18

' = 1/36

! =-8/18

! = 2/3

' = -8/18

' = 1/36

' = -8/18

= 2/3
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EN2= 0.

ELSE IF (N.EQ.16) THEN
IGROUP= 1

C= -.444444444444

ENI= -i.

_2= -. 5

ELSE IF (N.EQ.17) THEN
IGROUP= 1

C= 7.111111111111

ENI= -. 5

EN2= -. 5

ELSE IF (N.EQ.18) THEN
IGROUP= 2

C=-10. 666666666667

_i-- 0.

EN2-- -. 5

ELSE IF (N.EQ.19) THEN
IGROUP= 1

C= 7.111111111111

ENI-- °5

EN2-- -. 5

ELSE IF (N.EQ.20) THEN
IGROUP= 3

C=-i0.666666666667

ENI- .5

EN2-- 0.

ELSE IF (N.EQ.21) THEN

IGROUP= 1
C= 7.111111111111

ENI= .5

_2= °5

ELSE IF (N.EQ.22) THEN
IGROUP= 2

C=-10. 666666666667

ENI= 0°

EN2= .5

ELSE IF (N.EQ.23) THEN
IGROUP= 1

C= 7.111111111111
ENI= -. 5

EN2= .5

ELSE IF (N.EQ.24) THEN
IGROUP= 3

C=-I0. 666666666667

ENI= -. 5

_2= 0°

ELSE IF (N.EQ.25) THEN
IGROUP= 4

C= 16.

ENI= 0°

EN2= 0.
END IF

, = -8/18

, = 64/9

! = -32/3

= 64/9

' = -32/3

' = 64/9

' = -32/3

' = 64/9

! = -32/3

IF (IGROUP.EQ.I) THEN
X= C*(4.*ENI**2*ETI**4+ 4.*ENI**3*ETI**3- ETI**2- ENI*ETI)*

> (4.*EN2**2*ET2**4+ 4.*EN2**3*ET2**3- ET2**2- EN2*ET2)

ELSE IF (IGROUP.EQ.2) THEN

X= C*(ETI**4- 1.25"ETI*'2+ .25)*

231



> (4.*EN2**2*ET2**4+ 4.*EN2**3*ET2**3- ET2**2- H_2*ET2)

ELSE IF (IGROUP. EQ. 3 ) THEN
X= C* (4. *ENI**2*ETI**4+ 4.*ENI**3*ETI**3- ETI**2- ENI*ETI)*

> (ET2**4- 1.25"ET2"'2+ .25)

ELSE IF (IGROUP. EQ. 4) THEN

X= C*(ETI**4- 1.25"ETI*'2+ .25)*(ET2"'4- 1.25"ET2"'2+ .25)

END IF
PHI4= X

BEIInhN

END

T. Subroutine GAUSS

SUBROUTINE GAUSS (N)

C Solves for X matrix, where A*X=B, by applying Gauss-Jordan elimination

C****W**W**WWW*WWW***W**W*WWWW*WWWW***W*W***W**WWW*W***WWWW*W*WWW**WW**W

P_ER (MXE= 25, MYE= 20)

PARAMETER (MTCI= (I+MXE)*(I+MYE))

PARAMETER (MTC2= 2*(I+MYE)+I+MXE+2)

PARAMETER (MTC= MTCI+MTC2)

! # elements in x & y dirs
! # corner nodes

! extra nodes for mixed press

' total # press nodes

COMMON/MXTRAN/

>AMAT(MTC,MTC),BVEC(MTC),XVEC(MTC)

C Forward Elimination

NMI= N-I

DO 1 I= I,NMI
IPI= I+l

DO 1 J= IPI,N

C= AMAT (J, I)/AMAT (I, I)
DO 2 K= IPI,N

AMAT(J,K)= AMAT(J,K)- C*AMAT(I,K)

2 CONTINUE

B_EC(J)= BVEC(J)- C*BVEC(I)
1 CONTINUE

C Back elimination. Reduces A to the identity matrix,

C while B becomes the solution vector.

C

DO I0 I= I,N

NMI= N-I+1

BVEC (NMI) = BVEC (NMI)/AMAT (NMI, NMI)

XVEC (NMI): BVEC (NMI)
IF (NMI.EQ.I) GOTO 20
NMI= NMI-I

DO i0 J= I,NMI

NMJ= NMI-J

BVEC (NMJ) : BVEC (NMJ) -AMAT (NMJ,NMI) *BVEC (NMI)

i0 CONTINUE
20 CONTINUE

RETURN
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U. Subroutine MENISCUS

SUBROUTINE MENISCUS (CANG, BO, CA, MA, PR, BI, RS, PREF, RASPECT, PVAP,

> YREF, CR, FRHO, VREC, NINT, NPRINT, ISYMM, ICURVE, ITYPE,

> I PRESS)

C Solves for both sides of meniscus between two parallel plates

************************************************************************

IMPLICIT DOUBLE PRECISION (A-H)

IMPLICIT DOUBLE PRECISION (O-Z)

PARAMETER (MXE= 25,

PARAMETER (MXN= I+2*MXE)

MYE= 20) ! # elements in x & y direcs

' # nodes in x-direction

COMMON/MENVAR/

* A(3,MXE),B(3,MXE),C(3,MXE),AP(2),AQ(2)

COMMON/SURFACE/

*XP(MXN),YP(MXN),YSURF0(MXN),PD(MXN),PB(MXN),TEMP(MXN),

*SURFNN(MXN, 2),SURFNT(MXN, 2)

COMMON/PLOT/

*IMODE, IOUT8,IOUT9

DOUBLE PRECISION MA

DATA TOLL, TOLA/.0001,.00001/

DATA MAXSIT/100000/

DATA MAXNEWT/300/

DATA MAXEND/300/

DATA MAXANG/300/

DATA IMETHOD/I/

DATA E/2.718281828/

! Length and angle conv tolerances

, Maximum number of s iterations

, Maximum number of N-R iterations

! Maximum number of enc]point its

' Sol method.=0 secant/=l biscection

ANGOB= 1.5707963-CANG/57.2957795

DELS= I./DBLE(REAL(NINT))

C Surface scalar interpolation coefficients. 2nd order for temperature.

C ist order for pressure when IPRESS=0 and 2nd order in corners when

C IPRESS=I (or P=Ax2+Bx+C)

NE= 0

DO I0 N= 3,NPRINT,2
NE: NE+I

NI: N

N2= N-I

N3:N-2

XI= XP (NI)

X2: XP (N2)

X3= XP (N3)

DO i0 K= 1,2

IF (K.EQ.I) THEN
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i0

VARI= PD(NI)

VAR2: PD(N2)

VAR3= PD(N3)

IF (NE. EQ. i.OR.NE. EQ. (NPRINT- 1 )/2. AND. IPRESS. EQ. i) THEN

A (K,NE) = ((VARI-VAR2) / (Xl-X2) - (VAR2-VAR3) / (X2-X3)) / (XI-X3)

B (K,NE) = (VARI-VAR2) / (XI-X2) -A (K,NE) * (XI+X2)

C (K,NE) =VARI-A (K,NE) *XI* *2-B (K,NE) *Xl
ELSE

A (K,NE)=0.

B (K,NE) = (VARI -VAR3 )/ (Xl-X3)
C (K,NE) =VARI-B (K,NE) *Xl

END IF

ELSE IF (K.EQ.2) THEN

VARI= TEMP (NI)

VAR2 = TEMP (N2)

VAR3: TEMP (N3)

A (K, NE) = ((VARI-VAB2) / (XI-X2) - (VAR2-VAR3) / (X2-X3) )/ (XI-X3)

B (K,NE) = (VARI-VA22) / (XI-X2) -A (K,NE) * (XI+X2 }

C (K,NE) = VARI-A (K,NE) *XI**2-B (K,NE) *XI
END IF

CONTINUE

C Check if exponential t_rature approximation necessary for end
C surface elements

DO 20 N= 1,2

AP(N) = 0.

IF (N.EQ.I) THEN

XI= XP(3)

X2: XP(2)

X3= XP(1)

VI= TEMP (3)

V2= TEMP (2)

V3= TEMP (i)
NE= 1

NE0= 2

ELSE

xl= XP (NPRINT-2)
X2= XP (NPRINT- 1 )

X3= XP (NPRINT)

Vl= TEMP (NPRINT-2)

V2= TEMP (NPRINT-I)

V3= TEMP (NPRINT)
NE= (NPRINT-I)/2

NE0= NE-1

END IF

DEL= X3-XI

DX= DEL/100.

FMIN= A (2,NE) *XI**2+B (2,NE) *XI+C (2,NE)

FMID= A (2,NE) *X2**2+B(2,NE) *X2+C (2,NE)

FMAX: A (2,NE) *X3**2+B (2,NE) *X3+C (2,hiE)

XT: Xl

DO 21 K= 2,100

XT= XT+DX

F= A(2,NE) *XT**2+B(2,NE)*XT+C(2,NE)

IF ((XT-Xl)/DEL.LE.0.5) THEN

IF (ITYPE. EQ. 0) THEN
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IF (F.LT.FMIN.OR.F.GT.FMID) GOTO 22
ELSE

IF (F.GT.FMIN.OR.F.LT.FMID) GOTO 22
END IF

ELSE

IF (ITYPE. EQ. 0) THEN

IF (F.LT.FMID.OR.F.GT.FMAX) GOTO 22

ELSE

IF (F.GT.FMID.OR.F.LT.FMAX) GOTO 22

END IF

END IF

21 CONTINUE

GOT0 20

22 CONTINUE

23

24

25

26

AP (N) = .5

IF (N.EQ.I) THEN
XA= I.-Xl

XB= I.-X2

XC= I.-X3

ELSE

XA= Xl

XB= X2

XC= X3

END IF

IF (ITYPE. EQ. i) THEN
VI= I.-VI

V2= I.-V2

V3= I.-V3

AP(N) = 1.
END IF

VOMAX= Vl

VOMIN= VOMAX
DELV= .001

DO 23 K= i,i00000

VOMIN= VOMIN-DELV

FX= FUNC2 (VOMIN, XA, XB, XC, Vl, V2, V3 )

IF (FX.GT.0.) GOTO 24

CONTINUE
STOP

CONTINUE

V0= VOMIN

DO 25 K= i, i0000
v0o= vo
V0= (VOMIN+VOMAX)/2.

FX= FUNC2 (V0,XA,XB,XC,VI,V2,V3)

IF (FX.LE.0.) THEN
VOMAX= V0

ELSE

VOMIN= V0

END IF

IF (ABS((V0-V00)/V00) .LE..00001) GOTO 26

CONTINUE

STOP

CONTINUE

X0= XC* DLOG (V2-V0) -XB*DLOG (V3-V0)

X0= X0/(DLOG (V2-V0) -DLOG (V3-V0))
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COEFF= DLOG (V3-V0) / (XC-X0)

C (2,NE) = V0

IF (N.EQ.I) THEN

A (2,NE) = -i. *COEFF

B(2,NE)= -I.*(X0-1.)

ELSE

A(2,NE) = COEFF

B(2,NE) = X0

END IF

20 CONTINUE

C Check if exponential press fit necessary for end surface

IF (IPRESS.EQ.I.AND.ICURVE.NE.0) THEN

DO 30 N= 1,2

AQ (N) = 0.

IF (N.EQ.I) THEN

XI= XP(3)

X2= XP(2)

X3= XP(1)

VI= PD(3)

V2= PD(2)

V3= PD(1)

NE= 1

NE0= 2

ELSE

XI= XP (NPRINT-2)

X2= XP (NPRINT- I)

X3= XP (NPRINT)

VI= PD (NPRINT-2)

V2= PD (NPRINT- I)

V3 = PD (NPRINT)

NE= (NPRINT-I)/2

NE0= NE-1

END IF

DEL= X3-Xl

DX= DEL/100.

FMIN= A(I,NE) *XI**2+B (I,NE) *XI+C (I,NE)

FMID= A(I,NE) *X2**2+B (I,NE) *X2+C (I,NE)

FMAX= A(I,NE) *X3**2+B (I,NE) *X3+C (I,NE)

IF (FMAX.LT.FMID.AND.FMID.GE.FMIN) GOTO 30

IF (FMAX.GT.FMID.AND.FMID.LE.FMIN) GOTO 30

31

32

XT= Xl

DO 31 K= 2,100

XT= XT+DX

F= A (I, NE) *XT**2+B (I, NE) *XT+C (I, NE)

IF ((XT-Xl)/DEL.LE.0.5) THEN

IF (ITYPE.EQ. i) THEN

IF (F.LT.FMIN) GOTO 32 ! Cond

ELSE

IF (F.GT.FMIN) GOTO 32 ! Evap

END IF

END IF

CONTINUE

GOTO 30

CONTINUE

elements
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i i

33

34

35

36

AQ(N) : .5

IF (N.EQ.I) THEN
XA= i.-Xl

XB= 1.-X2

XC= I.-X3

ELSE

XA= Xl

XB= X2

XC= X3

END IF

IF (ITYPE. EQ. 0 ) THEN
VI= -i. *Vl

V2= -i. *V2

V3= -i. *V3

AQ (N) = i.
END IF

VOMAX= Vl

VOMIN= VOMAX
DELV= .001

DO 33 K= i, i0000000
VOMIN= VOMIN-DELV

FX= FUNC2 (VOMIN, XA, XB,XC,VI,V2,V3)

IF (FX.GT.0.) GOTO 34
CONTINUE

STOP

CONTINUE

V0= VOMIN

DO 35 K= i, i0000000
V00= V0

V0= (VOMIN+VOMAX)/2.

FX= FUNC2 (V0,XA,XB,XC,VI,V2,V3)

IF (FX.LE.0.) THEN
VOMAX= VO

ELSE

VOMIN= VO

END IF

IF (ABS((V0-V00)/V00) .LE..0000001) GOTO 36
CONTINUE

STOP

CONTINUE

X0= XC*DLOG (V2 -V0 )-XB*DLOG (V3 -V0 )

X0= X0/(DLOG (V2-V0) -DLOG (V3-V0) )

COEFF= DLOG (V3 -V0 )/ (XC-X0)

c (I,NE)= vo
IF (N.EQ.I) THEN

A(I,NE) = -i. *COEFF

B(I,NE)= -I.*(X0-1.)
ELSE

A(I,NE) = COEFF

B (I,NE) = X0
END IF

30 CONTINUE

END IF

C Max curvature point variance iteration loop
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XM= 0.5

XP((NPRINT+I)/2) =

XLR-- 0.

XOBJ= .5

ANGLIM= 0.

.5

DO 210 NPASS= 1,20

C Max and rain curvature calculations

IF (ITYPE.EQ.0) THEN

FTEMP= FUNC (XM, 2,NPRINT)

ELSE IF (ITYPE. EQ. I) THEN

FTEMP= FUNC (XM, 2,NPRINT) -i.

END IF

IF (ICURVE. EQ. 0 )

TMIN-- 0.
TMAX:

ELSE IF

TMIN=

TMAX=
ELSE IF

TMIN=

TMAX:

ELSE IF

TMIN=

TMAX=

>
ELSE IF

TMIN:

>

TMAX=

ELSE IF

TMIN:
TMAX=

>
ELSE IF

TMIN:

TMAX=

>

ELSE IF
TMIN=

>

TMAX=

>

END IF

THEN ' BO only

2. *DCOS (CANG/57. 2957795 )

(ICURVE. EQ. i) THEN ! Bo and Pd

CA*FUNC (XM, I,NPRINT)

2. *DCOS (CANG/57. 2957795) +TMIN

(ICURVE. EQ. 2 ) THEN [ Bo and Vr
-i. *VREC*FTEMP* *2

2. *DCOS (CANG/57. 29577951 +TMIN

(ICURVE. EQ. 3 ) THEN ! Bo and Cr
0.

2. *DCOS (CANG/57. 2957795) *
(i. -CR*FUNC (XM, 2, NPRINT) )+TMIN

(ICURVE. EQ. 4 ) THEN ! Bo, Pd and Vr
CA*FUNC (XM, i,NPRINT)

-VREC*FTEMP* *2

2. *DCOS (CANG/57. 2957795) +TMIN

(ICURVE. EQ. 5) THEN ! Bo, Pd and Cr

CA*FUNC (XM, I,NPRINT)
2. *DCOS (CANG/57. 2957795) *

(i. -CR*FUNC (XM, 2, NPRINT) )+TMIN

(ICURVE.EQ.6) THEN L Bo, Vr and Cr
-i. *VREC*-FT_**2

2. *DCOS (CANG/57. 29577951 *

(i. -CR*FUNC (XM, 2, NPRINT) )+TMIN

(ICURVE.EQ.7) THEN ! Bo, Pd, Vr and Cr

CA*FUNC (XM, i,NPRINT)
-VREC*_P**2

2. *DCOS (CANG/57. 2957795) *

(i. -CR*FUNC (XM, 2, NPRINT) )+TMIN

TO= TMAX

TI= TMIN

IF (NPASS.GE.2) TH_q

IF (ICLOSE.EQ.I) THEN

IF (NPASS.EQ.2) ANGLIM= -1.5707963

'/'MAX= (I.+.I*REAL(NPASS-I))*TMAX
T0=_

ELSE

IF (NPASS.EQ.2) ANGLIM= 1.5707963

=_
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FAC= i. +. 1*REAL (NPASS-2)

TMIN= (i .+. 1*REAL (NPASS-I)) * (i.+i. 2*FAC) *TMIN-I. 2*FAC*TMAX

TI= TMIN
END IF

END IF

XA= XM
XB= 0.

IF (NPASS. EQ. i.OR. (NPASS. GE. 2.AND. ICLOSE. EQ. i) ) THEN
CALL CURVE

> (XA, XB, ANGOB, ANGWMAX, DELS, XLL, XPL, TMAX, BO, CA, MA, PR, BI, RS,

> PVAP, CR, FRHO, VREC, NPRINT, ICURVE, ITYPE)

IF (IMODE.EQ.I) WRITE(6,1000)NPASS,XLL,T,TMAX, TMAX,ANGWMAX

>*57.2957795,(I.5707963-ANGWMAX)*57.2957795

IF (IOUT8.GE.2) WRITE(8,1000)NPASS,XTOT,T,TMAX, TMAX, ANGWMAX

>*57.2957795,(I.5707963-ANGWMAX)*57.2957795
END IF

IF (NPASS.EQ. 1.OR. (NPASS.GE.2.AND. ICLOSE.EQ. 0) ) THEN
CALL CURVE

> (XA, XB, ANGOB, ANGWMIN, DELS, XLL, XPL, TMIN, BO, CA, MA, PR, BI, RS,

> PVAP, CR, FRHO, VREC, NPRINT, ICURVE, ITYPE)

IF (IMODE.EQ.I) WRITE(6,1000)NPASS,XLL,T,TMIN, TMIN,ANGWMIN

>*57.2957795,(I.5707963-ANGWMIN)*57.2957795

IF (IOUTS.GE.2) WRITE(8,1000)NPASS,XTOT, T, TMIN, TMIN,ANGWMIN

>*57.2957795,(I.5707963-ANGWMIN)*57.2957795
END IF

IF (ANGOB. GT. ANGWMAX) THEN

ICLOSE= 1 ! Middle bulge down

ELSE IF (ANGOB.LT.ANGWMIN) THEN

ICLOSE= 0 ! Middle bulge up
ELSE

GOTO 205

END IF

210 CONTINUE

STOP

205 CONTI_TJE

NITTER= 0

DO 200 J= 1,25

T= (T0+TI)/2.
ANGW01= ANGW

C Left hand side of meniscus

XA= XM

XB= 0.

CALL CURVE

> (XA, XB, ANGOB, ANGW, DELS, XLL, XPL, T, BO, CA, MA, PR, BI, RS, PVAP, CR,

> FRHO, VREC, NPRINT, ICURVE, ITYPE)

XTOT= XLR+XLL
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C Check lengtk

IF (IMODE.EQ.I) WRITE(6,1000)J,XTOT,T,TMIN, TMAX, ANGW

> *57.2957795,(I.5707963-ANGW)*57.2957795

IF (IOUTS.GE.2) WRITE(8,1000)J,XTOT,T,TMIN, TMAX,ANGW

> *57.2957795,(I.5707963-ANGW)*57.2957795

IF (NPASS.GE.2) THEN

IF (ICLOSE.EQ.I) THEN

IF (ANGW. LT.I.5707963.AND.ANGW.GT.ANGLIM) ANGLIM= ANGW

ELSE IF (ICLOSE.EQ.0) THEN

IF (ANGW.GT.-I.5707963.AND.ANGW. LT.ANGLIM) ANGLIM= ANGW

END IF

END IF

C Curvature correction

IF (DABS(ANGW-ANGOB).LE.TOLL) GOTO 300

IF (ANGW. LT.ANGOB.OR.ANGW.LE.,I.5707963) THEN

TI= T

ELSE IF (ANGW.GT.ANGOB.OR.ANGW.GE.I.5707963) THEN

TO= T

END IF

IF (NITTER.GE.8) GOTO 201

200 CONTINUE

201 CONTINUE

IF (ICLOSE.EQ.I) THEN

IF (IMODE.EQ.I) WRITE(6,2000)ANGLIM*57.2957795

IF (IOUT8.GE.2) WRITE(8,2000)ANGLIM*57.2957795

ELSE

IF (IMODE.EQ.I) WRITE(6,2001)ANGLIM*57.2957795

IF (IOUT8.GE.2) WRITE(8,2001)ANGLIM*57.2957795

END IF

300 CONTINUE

Y0= RASPECT-YP(1)

DX= XP(2)-XP(1)

DO 510 K= I,NPRINT

YP(K)= YP(K)+Y0

N= K

IF (DABS(XP(K)-.5).LE..I*DX) GOTO 511

510 CONTINUE

511 CONTINUE

DO 520 KK= N+I,NPRINT

YP (KK) = YP(NPRINT+I-KK)

PD(KK) = PD(NPRINT+I-KK)

PB (KK) = PB (NPRINT+I-KK)

TEMP (KK) = TEMP (NPRINT+I-KK)

SURFNN(KK, I)= -I.*SURFNN(NPRINT+I-KK, I)

SURFNN(KK, 2)= 5q/RFNN(NPRINT+I-KK,2)

S7/RFNT(KK, I)= Sq/RFNT(NPRINT+I-KK, I)

SX/RFNT(KK,2)= -I.*573RFNT(NPRINT+I-KK,2)

520 CONTI_K/£

r
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YREF= YP(1)

I000 FORMAT(/,

2000 FORMAT(,
>

2001 FORMAT(

>

Calced Length=

T=

Tmin=

Tmax=

Contour Angle=

Contact Angle=

' CURV ITERATION # (J)= ',13X, I3,/,

',FI6.10,/,

',FI6.10,/,

',FI6.10,/,

',FI6.10,/,

',F16.10,/,

',FI6.10)

Meniscus curvature failed to maximize to desired',/,

contact angle. Maximum angle reached= ',E12.6)

Meniscus curvature failed to minimize to desired',/,

contact angle. Minimum angle reached= ',E12.6)

V, Subroutine CURVE

SUBROUTINE CURVE

> (XA, XB, ANGOB, ANGW, DELS, XLENGTH, XREAL, T, BO, CA, MA, PR, BI, RS,

> PVAP, CR, FRHO, VREC, NPRINT, ICURVE, ITYPE)

IMPLICIT DOUBLE PRECISION (A-H)

IMPLICIT DOUBLE PRECISION (O-Z)

PARAMETER (MXE= 25,

PARAMETER (MXN= I+2*MXE)

MYE= 20) ! # elements in x & y direcs

! # nodes in x-direction

COMMON/MENVAR/

* A(3,MXE) ,B(3,MXE) ,C(3,MXE) ,AP(2) ,AQ(2)

COMMON�SURFACE�

*XP(MXN),YP(MXN),YSURF0(MXN),PD(MXN),PB(MXN),TEMP(MXN),

*SURFNN(MXN, 2),SURFNT(MXN, 2)

COMMON/PLOT/

*IMODE, IOUT8,IOUT9

DOUBLE PRECISION MA

DATA MAXS,MAXA,MAXL, IERROR/4000000,300,300,0/

DATA TOLL, TOLA/.00001,.0000001/

IF (XA.LT.XB) THEN

FAC= i.

IFAC= 1

XOBJ= i.

ELSE

FAC= -i.

IFAC= -I

XOBJ= 0.

END IF

DO i0 N= I,NPRINT

IF (XP(N).EQ.XA) THEN
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242

YP(N) = 0.

_(N, i)= 0.

SiIRFNN (N, 2 )= I.

ST]RFNT(N, I)= i.

_(N,2) : 0.

IF (FAC.GT.0.) THEN

NFLAG= N+I

ELSE

NFLAG= N-I

END IF

GOTO Ii

ELSE IF (XP(N).GT.XA) THEN

IF (FAC.GT.0.) THEN

NFLAG= N

ELSE

NFLAG= N-I

END IF

GOTO ii

END IF

I0 CONTINUE

ii CONTINUE

NMID= N

SI= 0.

SO= 0.
SM: 0.

SMI: 0.

Xl= 0.

XREAL: XA

YI: 0.

ALPHI= 0.

ALPH0= 0.

ALPHM= 0.

ALPITHMI = 0.

! Angle at i-i

! Angle at i-2

! Angle at i-3

' Angle at i-4

DO i00 N= 2,MAXS

$2= SI+DELS

ALPH2 = ALPH1

XREALI: XREAL

XREAL0 = XREAL i

DO II0 L= I,MAXL

IF (ITYPE. EQ. 0) THEN

FTEMP: FUNC (XREALI, 2 ,N-PRINT)

ELSE IF (ITYPE. EQ. 1 ) THEN

FTEMP= FUNC (XREALI, 2 ,NPRINT) -I.

END IF

IF (ICURVE. EQ. 0) THEN ' Bo only
CON1: T+BO*YI

CON2= I.

ELSE IF (ICURVE.EQ.I) THEN ! Bo and Pd

CON1 =T+BO*YI-CA*FUNC (XREALI, I, NPRINT)
CON2=1

ELSE IF (ICURVE.EQ.2) _ ! Bo and Vr

CONi= T+BO*YI+VREC*FTEMP**2
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120

i000

130

CC_2= I.

ELSE IF (ICURVE.EQ.3) THEN ! Bo and Cr

CON1= T+BO*YI

CON2= I.-CR*FUNC(XREALI,2,NPRINT)

ELSE IF (ICURVE.EQ.4) THEN ! Bo, Pd and Vr

CON1= T+BO*YI-CA*FUNC(XREALI,I,NPRINT)

> +VREC*FTEMP**2

co 2: 1.
ELSE IF (ICURVE.EQ.5) THEN ! Bo, Pd and Cr

CONI=T+BO*YI-CA*FUNC(XREALI, I,NPRINT)

CON2= I.-CR*FUNC(XREALI,2,NPRINT)

ELSE IF (ICURVE.EQ.6) THEN ! Bo, Vr and Cr

CON1= T+BO*YI+VREC*FTEMP**2

CON2= I.-CR*FUNC(XREALI,2,NPRINT)

ELSE IF (ICURVE.EQ.7) THEN ! Bo, Pd, Vr and Cr

CON1= T+BO*YI-CA*FUNC(XREALI,I,NPRINT)

> +VREC*FTEMP**2

CON2= I.-CR*FUNC(XREALI,2,NPRINT)

END IF

IF (N.EQ.2.AND.L.EQ.I) THEN

RCI= CONI/CON2

IF (XP(NMID) .EQ.XA) PB(NMID)= .5/DSIN(ANGOB) *

> ( (i. -CR*FUNC (XP (NMID) ,2, NPRINT) )*RC I+VREC*FTEMP**2 )

END IF

ANGNEW= 0.

DO 120 M= I,MAXA

IF (N.EQ.2) THEN

ANGNEW= ALPHI+ (CONI*DELS+BO* (DSIN (ALPHI) +DSIN (ALPH2) )

> /2. *DELS**2 )/CON2

ELSE

ANG= (3. *ALPH2+6.*ALPHI-ALPH0)/8.

ANGNEW= (4. *ALPHI-ALPH0)/3. +

> (2. *CON1* DELS+B0* DELS* *2 /3. *

> (DSIN (ALPHI) +4. *DSIN (ANG) +DSIN (ALPH2) ) )/

> 3./CON2

END IF

IF (DABS(ANGNEW-ALPH2) .LE.TOLA) GOTO 130

ALPH2 = ANGNEW

CONTINUE

>

>

IERROR= 1

IF (IOUT8.NE.0) WRITE(8,1000)

IF (IMODE.EQ.I) WRITE(6,1000)

FORMAT(' ANGLE ITERATION DID NOT CONVERGE')

IF (IERROR.EQ.I) GOTO 9999

CONTINUE

IF (ANGNEW. LE..001.AND.N.EQ.2) THEN

ANGNEW= (ALPHI*(CON2+BO/2.*DELS**2)+CONI*DELS)/

(CON2-BO/2.*DELS**2)

ELSE IF (ANGNEW. LE..001.AND.N.NE.2) THEN

ANGNEW= 4.*ALPHI-ALPH0+B0*DELS**2/6./CON2*

(8.*ALPHI-ALPH0)+2.*CONI*DELS/CON2

ANGNEW= ANGNEW/(3.-5.*BO*DELS**2/6./CON2)

END IF

ALPH2= ANGNE_
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ii0

IF (N.EQ.2) THEN

XNEW= XI+ (DCOS (ALPHI) +DCOS (ALPH2) )/2. *DELS

YNEW= YI+ (DSIN (ALPHI) +DSIN (ALPH2) )/2. *DELS

ELSE

ANG= (3. *ALPH2+6.*ALPHI-ALPH0)/8.

XNEW= XI+ (DCOS (ALPHI) +DCOS (ALPH2) + 4. *DCOS (ANG)) *DELS/6.

YNEW= YI+ (DSIN(ALPHI)+DSIN(ALPH2)+ 4.*DSIN(ANG) )*DELS/6.

END IF

XREALI= XREAL+FAC* (XNEW-Xl)

IF (DABS(XREALI-XREAL0) .LE.TOLL) GOT0 140

XREAL0 = XREALI

CONTINUE

i001

C

140

IERROR= 1

IF (IOUT8.NE.0) WRITE(8,1001)

IF (IMODE.EQ.I) WRITE(6,1001)

FORMAT(' LENGTH ITERATION DID NOT CONVERGE')

IF (IERROR. EQ.I) GOTO 9999

CONTINUE

IF (N.EQ.2) THEN

RC2 = (ALPH2-ALPHI)/DELS

ELSE

RC2=

END IF

X2= XNEW

Y2= YNEW

XREALI= XREAL+FAC* (XNEW-Xl)

IF (XIgEALI.LT.0..OR.XREALI.GT.I.) THEN

3.*ALPH2-4.*ALPHI+ALPH0)/2./DELS

FPRESS= FUNC (XOBJ, I,NPRINT)

IF (ITYPE. EQ. 0 ) THEN

FTEMP= FUNC (XOBJ, 2, NPRINT)

ELSE IF (ITYPE. EQ. I) THEN

FTEMP= FUNC (XOBJ, 2, NPRINT) - i.

END IF

IF (ICURVE.EQ.0) THEN ! Bo only

CON1= T+BO*YI

CON2= i.

ELSE IF (ICURVE.EQ.I) THEN ! Bo and Pd

CONI=T+BO*YI-CA*FPRESS

CON2=1 _

ELSE IF (ICURVE, EQ. 2 ) THEN ! BO and Vr

CON1= T+BO*YI+VREC*FTEMP**2

CON2= i.

ELSE IF (ICURVE.EQ.3) THEN ! Bo and Cr

CON1= T+BO*YI

CON2= I. -CR*FUNC (XOBJ,2,NPRINT)

ELSE IF (ICURVE.EQ.4) THEN ! BO, Pd and Vr
* W W W*CON1= T+BO YI-CA FPRESS+VREC FTEMP 2

CON2= i.

ELSE IF (ICURVE.EQ.5) THEN ! Bo, Pd and Cr
CONI=T+BO*YI-CA*FPRESS

CON2= I.-CR*FUNC(XOBJ, 2,NPRINT)

ELSE IF (ICURVE.EQ.6) THEN [ Bo, Vr and Cr

CON1= T+BO*YI+VREC*FTEMP**2
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>

>

>

>

401

402

>

>

>

400

403

CON2= 1. -CR*FUNC (XOBJ, 2,NPRINT)

ELSE IF (ICURVE.EQ.7) THEN ! Bo, Pd, Vr and Cr
CON1= T+BO*YI-CA*FPRESS+VREC* FTEMP** 2

CON2= i. -CR*FUNC (XOBJ, 2, NPRINT)
END IF

END

DS_IN= 0.
DSMAX= DELS

DS2= DELS

DO 400 L= I,MAXL

DSI= .5* (DSMIN+DSMAX)

DO 401 M= I,MAXA
ANGNEW= ALPH2

ANG= (2.*DS2+DSI)/DS2/4.*ALPHI+

(2. *DS2+DSI) / (DSI+DS2)/4. *ANGNEW-

DSI/DS2*DSI/(DSI+DS2 )/4. *ALPH0

ALPH2= DSI/CON2* (DSI+DS2) / (2. *DSI+DS2) *

(CONI+BO*DSI/6. * (DSIN (ALPH2) +4. *DSIN (ANG) +DSIN (ALPHI)) )+

(DSI+DS2)/DS2 * (DSI+DS2) / (2. *DSI+DS2 )*ALPHI-

DSI/DS2*DSI/(2. *DSI+DS2) *ALPH0

IF (DABS(ANGNEW-ALPH2).LE.TOLA) GOTO 402

CONTINUE

CONTINUE

ANG= (2.*DS2+DSI)/DS2/4.*ALPHI+

(2. *DS2+DSI) / (DSI+DS2)/4. *ALPH2-

DSI/DS2*DSI/(DSI+DS2 )/4. *ALPH0

XNEW= XI+ (DCOS (ALPHI) +DCOS (ALPH2) + 4. *DCOS (ANG)) *DSI/6.

YNEW= YI+ (DSIN(ALPHI)+DSIN(ALPH2)+ 4. *DSIN(ANG) )*DSI/6.

XREALI= XREAL+FAC* (XNEW-XI)

IF (DABS(XREALI-XOBJ).LE.TOLL/1000.) GOTO 403

IF ((XREALi. LT.XOBJ.AND.FAC.LT.0.).OR.

(XREALI.GT.XOBJ.AND.FAC.GT. 0. )) THEN
DSMAX= DSI

ELSE

DSMIN= DSI

END IF

CONTINUE

CONTINUE

X2= XNEW

Y2= YNEW

ANGW= ALPH2
ALPHA= ALPH2

GOTO 300
IF

IF (DABS (ALPH2) .GT. i. 5707963) THEN

ANGW= ALPH2

GOTO 300

ELSE
X2= XNEW

Y2= YNEW

XREAL= XREAL+FAC* (X2-Xl)
NOLD= NFLAG

IF (XREAL.EQ.XP(NFLAG)) THEN

YP (NFLAG) = YNEW
ALPHA= ALPH2

RCURV= RC2

IF (FAC. GT. 0. ) NFLAG= NFLAG+I
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IF (FAC. LT. 0. ) NFLAG= NFLAG-I

ELSE IF (XREAL.GT.XP(NFLAG) .AND.FAC.GT. 0. ) THEN

DX= X2-Xl- (XREAL-XP(NFLAG))

YP(NFLAG) = (YNEW-YI) / (XNEW-Xl) *DX+YI

ALPHA= (ALPH2-ALPHI) / (XNEW-Xl) *DX+ALPHI

RCURV= (RC2-RCl) / (XNEW-Xl)*DX+RCl

NFLAG= NFLAG+ 1

ELSE IF (XREAL.LT.XP(NFLAG) .AND.FAC.LT.0. ) THEN

DX= X2-Xl- (XP (NFLAG) -XREAL)

YP(NFLAG) = (YNEW-YI) / (XNEW-Xl) *DX+YI

ALPHA= (ALPH2-ALPHI) / (XNEW-Xl) *DX+ALPHI

RCURV= (RC2-RCl) / (XNEW-Xl) *DX+RCl

NFLAG= NFLAG- 1

END IF

PB (NOLD) : .5/DSIN (ANGOB) *

( (i. -CR*FUNC (XREAL, 2, NPRINT) ) *RCURV+VREC*FTEMP* *2 )

SI/RFNT (NOLD, i) : DCOS (FAC*ALPHA)

(NOLD, 2 )= DSIN(FAC*ALPHA)

SURFNN (NOLD, i) = -i. *SI/RFNT (NOLD, 2)

_(NOLD, 2)= SXJRFNT(NOLD, i)

C

END IF

ALPHMI = ALPHM

ALPHM= ALPH0

ALPH0= ALPHI

ALPHI= ALPH2

SMI= SM

SM= SO

SO= S1

SI= $2

XI= X2

YI= Y2

RCI= RC2

i00 CONTINUE

1002

IERROR= 1

IF (IOUT8.NE.0) WRITE(8,1002)

IF (IMODE.EQ.I) WRITE(6,1002)

FORMAT(' S INTEGRATION FAILED TO REACH ALPH=ANGOB')

IF (IERROR.EQ.I) GOTO 9999

3OO CONTINUE

X2= XNEW

Y2= YNEW

XREAL= XREAL+FAC* (X2-Xl)

PB(NFLAG)= .5/DSIN(ANGOB) *

> ( (i. -CR*FI/NC (XR_EAL, 2, NPRINT) ) *RCURV+VRF__*FTEMP**2)

DX= X2-XI-FAC* (XREAL-XP (NFLAG))

YP (NFLAG) = Y2

SURFNT (NFLAG, 1 )= DCOS (FAC*ALPH2)

5X/RFNT (NFLAG, 2 )= DSIN (FAC*ALPH2)

SI/RFNN (NFLAG, i) = -i. *STJRFNT (NFLAG, 2)

SI/RFNN(NFLAG,2) = _(NFLAG, i)

_GTH= X2

=_

246



IF (IMODE.EQ.I) WRITE(6,1003)XA, XB,DELS,XLENGTH,XREAL,T,BO,

> NPRINT, NFLAG

IF (IOUT8.GE.2) WRITE(8,1003)XA,XB, DELS,XLENGTH,XREAL,T,BO,

> NPRINT, NFLAG

1003 FORMAT(/,' XA=

>

>

>

>

>

>

>

>

XB=

DELS=

XLENGTH=

XREAL=

T=

BO=

NPRINT=

NFLAG=

',F14.6,/,

,FI4 6 /

,FI4 6 /

,FI4 6 /

,FI4 6 /

,FI4 6 /

,FI4 6 /

,I14,/

,I14)

9999 CONTINUE

IF (IERROR.EQ.I) STOP

C

RETURN

END

W. Function FUNC

FUNCTION FUNC (X, I, NPRINT)

IMPLICIT DOUBLE PRECISION (A-H)

IMPLICIT DOUBLE PRECISION (O-Z)

PARAMETER (MXE= 25, MYE= 20) ! # elements in x & y direcs

PARAMETER (MXN= I+2*MXE) ! # nodes in x-direction

COMMON/MENVAR/

* A(3,MXE),B(3,MXE),C(3,MXE),AP(2),AQ(2)

COMMON/SURFACE/

*XP(MXN),YP(MXN),YSURF0(MXN),PD(MXN),PB(MXN),TEMP(MXN),

*SURFNN(MXN, 2),SURFNT(MXN, 2)

DIMENSION ISOLVEI(2)

INTEGER I,NPRINT,N,NEL,K,NE

DATA E/2.718281828/

C ISOLVEI(N) = 0: FUNC set to 0 past walls

C = i: Linear decline from value at wall to 0 at DS

C = 2: Constant at value at wall

C = 3: Funcional extrapolation of variable value

ISOLVEI(1)= 3 ! Pressure

ISOLVEI(2)= 3 ! Temperature
DS= .3

IF (X.GE.XP(NPRINT-2)) THEN

NEL= (NPRINT-I)/2

IF (X.GT.XP(NPRINT)) THEN

IF (ISOLVEI(I).EQ.3) THEN
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XT= X

ELSE

XT= XP (NPRINT)

END IF

ELSE

XT= X

END IF

IF ((AP(2) .GT.. 1.AND. I.EQ.2) .OR. (AQ(2) .GT..I.AND. I.EQ. i) )

ANS= E** (A(I,NEL)* (XT-B (I,NEL)) )+C (I,NEL)

IF (AP (2). GT. •6.AND. I. EQ. 2 ) ANS= I. -ANS

IF (AQ(2).GT..6.AND.I.EQ.I) ANS=-I.*ANS

ELSE

ANS= A(I,NEL) *XT**2+B(I,NEL) *XT+C(I,NEL)

END IF

IF (X.GT.XP(NPRINT)) THEN

IF (ISOLVEI(I).EQ.0) THEN

ANS= 0.

ELSE IF (ISOLVEI (I). EQ. 1 ) THEN

IF (X.LE.XP(NPRINT)+DS) THEN

ANS= ANS-ANS/DS* (X-XP (NPRINT))

ELSE IF (X.GT.XP(NPRINT)+DS) THEN

ANS= 0.

END IF

END IF

END IF

ELSE IF (X.LE.XP(3)) THEN

NEL= 1

IF (X.LT.XP(1)) THEN

IF (ISOLVEI(I).EQ.3) THEN

XT= X

ELSE

XT= XP(1)

END IF

ELSE

XT= X

END IF

IF ((AP(1) .GT..I.AND.I.EQ.2) .OR. (AQ(1) .GT..I.AND.I.EQ.I))

ANS= E** (A(I,NEL) * (XT-B (I,NEL)) )+C(I,NEL)

IF (AP(1).GT..6.AND. I.EQ.2) ANS= I.-ANS

IF (AQ(1).GT..6.AND.I.EQ.I) ANS=-I.*ANS

ELSE

ANS= A(I,NEL) *XT**2+B(I,NEL) *XT+C(I,NEL)
END IF

IF (X.LT.XP(1)) THEN

IF (ISOLVEI(I).EQ.0) THEN

ANS= 0°

EL_ IF (ISOLVEi (I). EQ. i) THEN

IF (X.GE.XP(1)-DS) THEN

_S= _S/DS* (X+DS-XP (i) )

ELSE IF (X.LT.XP(1)-DS) THEN

ANS-- 0.

END IF

END IF

END IF

ELSE

NE= 1

THEN

THEN
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DO 1 K= 3,NPRINT-2,2
NE= NE+I

IF (X.GE.XP(K) .AND.X.LE.XP(K+2)) THEN

NEL= NE

GOT02

END IF

CONTINUE

CONTINUE

ANS= A(I,NEL) *X**2+B (I,NEL) *X+C (I,NEL)

END IF

FUNC= ANS

RETURN
END

)L Function FUNC2

FUNCTION FUNC2 (B,XI,X2,X3,VI,V2,V3)

IMPLICIT DOUBLE PRECISION (A-H)

IMPLICIT DOUBLE PRECISION (O-Z)

FI= DLOG(VI'B)-DLOG(V2-B)

F2= X2*DI/3G(V3-B)-X3*DLOG(V2-B)

F3= DLOG(V3-B)-DLOG(V2-B)

F4= X2*DI/3G(VI-B)-XI*DIZ_(V2-B)

FUNC2= FI*F2-F3*F4

RETURN

END

Y, Function FSIN

FUNCTION FSIN (A)
IMPLICIT DOUBLE PRECISION

IF (A. LT.0.) THEN

X= -i. *DSIN (DABS (A))

ELSE

X= SIN (A)
END IF

FSIN= X
RETLrRN

(A-Z)

249



REFERENCES

I,

,

.

,

.

6.

,

.

,

I0.

II.

12.

13.

Hastings, L.J., and Schmidt, G.R.: "'The Marshall Space Flight Center Cryogenic Fluid

Management Program." AIAA Space Programs and Technologies Conference, AIAA Paper 93-
4224, September 21-23, 1993.

Schmidt, G.R., and Hastings, L.J.: "Cryogenic Fluid Management Program at MSFC." AIAA

Space Programs and Technologies Conference, AIAA Paper 90-3711, September 19-21, 1990.

Blatt, M.H., Stark, J.A., and Siden, L.E.: "Low Gravity Propellant Control Using Capillary

Devices in Large Cryogenic Vehicles--Design Handbook." General Dynamics Convair

Division, Report GDC-DDB70-006, Contract NAS8-21465, August 1970.

Dodge, F.T.: "Fluid Management in Low Gravity." Low-Gravity Fluid Dynamics and Transport

Phenomena, American Institute of Aeronautics and Astronautics, Washington, DC, 1990, pp. 1-
18.

Symons, E.P.: "Wicking of Liquids in Screens." NASA Technical Note D-7657, May 1974.

Burge, G.W., and Blackmon, J.B.: "Study and Design of Cryogenic Propellant Acquisition

Systems--Vol. 11.'" McDonnell Douglas Astronautics Co., Report MDC G5038, Contract NAS8-
27685, December 1973.

Blackmon, J.B.: "Design, Fabrication, Assembly, and Test of a Liquid Hydrogen Acquisition

Subsystem." McDonnell Douglas Astronautics Co., Report MDC G5360, Contract NAS8-27571,
May 1974.

Cady, E.C.: "'Design and Evaluation of Thermodynamic Vent/Screen Baffle Cryogenic Storage

System." McDonnell Douglas Astronautics Co., Report MDC G5360, NASA CR-134810, June
1975.

Paynter, H.L., Page, G.R.: "Acquisition/Expulsion Orbital Propulsion System Study--Vol. II:
Cryogenic Design." NASA CR- 134154, October 1973.

Warren, R.P.: "Acquisition System Environmental Effects Study." Martin Marietta Corp., Report
MCR-75-21, Contract NAS8-30592, May 1975.

Warren, R.P.: "Measurements of Capillary System Degradation." AIAA Paper 75-1197,
September 1975.

Bennett, F.O.: "Design and Demonstrate the Performance of Cryogenic Components

Representative of Space Vehicles--Start Basket Liquid Acquisition Device Performance

Analysis." General Dynamics Space Systems Division, Report GDSS-CRAD-87-004, Contract

NAS8-31778, February 1987.

Meserole, J.S., and Jones, O.S.: "Pressurant Effects on Cryogenic Liquid Acquisition Devices."

AIAA Journal of Spacecraft and Rocket, vol. 30, No. 2, 1993, pp. 236-243.

i

25O



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Burelback,J.P.,Bankoff, S.G.,andDavis,S.H.: "NonlinearStability of Evaporating/Condensing
Liquid Films." Journalof Fluid Mechanics,vol. 195,October1988,pp.463-494.

Luikov, A.V., and Vasiliev, L.L.: "Progress in Heat Pipe and Porous Heat Exchanger
Technology." InternationalJournal of Heat and Mass Transfer, vol. 18, No. 2, 1975, pp. 177-
190.

Ostrach, S., and Kamotani, Y.: "Recent Developments in Oscillatory Thermocapillary Flows."

Proceedings of AIAA/IKI Microgravity Science Symposium, American Institute of Aeronautics

and Astronautics, Washington, DC, 1992, pp. 25-32.

Ostrach, S.: "Fluid Mechanics in Crystal GrowthmThe 1982 Freeman Scholar Lecture." ASME

Journal of Fluids Engineering, vol. 105, No. 1, 1983, pp. 5-20.

Fischat, G.H., Herr, K., and Barklage-Hilgefort, H.: "Probleme bie der Vorbereitung

Glastechnischer Untersuchungen in Weltraum." Glastechnische Berichte, vol. 53, No. 1, 1980,

pp. 1-9.

Kou, S., and Sun, D.: "Fluid Flow and Weld Penetration in Stationary Arc Welds." Metallurgical

Transactions, vol. 16, No. 2, 1985, pp. 203-213.

Bergman, T.L., and Ramadhyani, S.: "Combined Buoyancy- and Thermocapillary-Driven
Convection in Open Square Cavities." Numerical Heat Transfer, vol. 9, No. 4, 1986, pp. 441-
451.

Bergman, T.L., and Keller, J.R.: "Combined Buoyancy, Surface Tension Flow in Liquid Metals."

Numerical Heat Transfer, vol. 13, No. 1, 1988, pp. 49--63.

Jue, T.C., Ramaswamy, B., and Akin, J.E.: "Computation of Thermocapillary and Buoyancy

Affected Cavity Flow Using Semi-Implicit FEM." Numerical Methods in Thermal Problems,

vol. 7, Part 1, 1991, pp. 402-312.

Hadid, H., and Roux, B.: "Buoyancy- and Thermocapillary-Driven Flows in Differentially
Heated Cavities for Low Prandtl Number Fluids." Journal of Fluid Mechanics, vol. 235,

February 1992, pp. 1-36.

Sen, A.K., and Davis, S.H.: "Steady Thermocapillary Flows in Two-Dimensional Slots." Journal

of Fluid Mechanics, vol. 121, August 1982, pp. 163-186.

Sen, A.K.: "Thermocapillary Convection in a Rectangular Cavity With a Deformable Interface."

Physics of Fluids A, vol. 29, No. 11, 1986, pp. 3881-3883.

Strani, M., Piva, R., and Graziani, G.: "Thermocapillary Convection in a Rectangular Cavity:

Asymptotic Theory and Numerical Simulation." Journal of Fluid Mechanics, vol. 130, May

1983, pp. 347-376.

Zebib, A., Homsy, G.M., and Meiburg, E.: "High Marangoni Number Convection in a Square

Cavity." Physics of Fluids A, vol. 28, No. 12, 1985, pp. 3467-3476.

251



28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Carpenter,B., a0d Homsy, G.M.: "Combined Buoyant-ThermocapillaryFlow in a Cavity."
Journalof Fluid Mechanics,vol. 207,October1989,pp. 121-132.

Cuvelier,C., andDriessen,J.M.: "ThermocapillaryFreeBoundariesin CrystalGrowth." Journal
of Fluid Mechanics,vol. 169,August1986,pp. 1-26.

Fu,B.-I., andOstrach,S.: "Numerical Solutionsof ThermocapillaryFlows in Floating Zones."
TransportPhenomenain MaterialsProcessing,AmericanSocietyof MechanicalEngineers,New
York, NY, 1983,pp. 1-9.

Shen,Y., Neitzel,P., Jankowski,D., andMittelmann,H.: "EnergyStability of Thermocapillary
Convectionin aModel of theFloat-Zone,CrystalGrowthProcess."Journalof Fluid Mechanics,
vol. 217,August1990,pp.639--660.

Kobayashi,N.: "SteadyConvectionCausedby theTemperatureInhomogeneityin a Cylindrical
FloatingZone."JapaneseJournalof AppliedPhysics,vol. 27,No. 1, 1988,pp. 20-24.

Xu, J.-J., and Davis, S.H.: "Instability of Capillary Jets With Thermocapillarity." Journal of Fluid
Mechanics, vol. 161, December 1985, pp. 1-25.

Durancea, J.L., and Brown, R.A.: "Finite Element Analysis of Melt Convection and Interface

Morphology in Earthbound and Microgravity Floating Zones." Drops and Bubbles Third

International Colloquium, American Institute of Physics, New York, NY, 1989, pp. 133-144.

Hyer, J., Jankowski, D., and Neitzel, G.: "Thermocapillary Convection in a Model Float Zone."

AIAA Journal of Thermophysics and Heat Transfer, vol. 5, No. 4, 1991, pp. 577-582.

Lan, C.W., and Kou, S.: "Heat Transfer, Fluid Flow, and Interface Shapes in Floating Zone
Crystal Growth." Journal of Crystal Growth, vol. 108, 1991, pp. 351-366.

Zhang, Y., and Alexander, J.I.D.: "Surface Tension and Buoyancy-Driven Flow in a
Nonisothermal Liquid Bridge." International Journal for Numerical Methods in Fluids, vol. 14,
No. 2, 1992, pp. 197-215.

Kamotani, Y., and Platt, J.: "Effect of Free Surface Shape on Combined Thermocapiliary and

Natural Convection." AIAA Journal of Thermophysics and Heat Transfer, vol. 6, No. 4, 1992,
pp. 721-726.

Potash, M., and Wayner, P.: "Evaporation From a Two-Dimensional Extended Meniscus."

International Journal of Heat and Mass Transfer, vol. 15, No. 10, 1972, pp. 1851-1863.

Renk, F.J., and Wayner, P.C.: "An Evaporating Ethanol Meniscus--Part II: Analytical Studies."
ASME Journal of Heat Transfer, vol. 101, No. 1, 1979, pp. 59-62.

Werhle, V., and Voulelikas, G.: "Evaporation From a Two-Dimensional Meniscus." American

Institute of Aeronautics and Astronautics Journal, vol. 23, No. 2, 1985, pp. 309-313.

Mirzamoghadam, A., and Catton, I.: "A Physical Model of the Evaporating Meniscus." ASME
Journal of Heat Transfer, vol. 110, No. 1, 1988, pp. 201-207.

252
"_ U,S, GOVERNMENTPRINTNG OFFICE 1994 533--108/00030



43. Swanson, L.W., and Herdt, G.C.: "Model of the Evaporating Meniscus in a Capillary Tube."

ASME Journal of Heat Transfer, vol. 114, No. 2, 1992, pp. 434--441.

44. Swanson, L.W., and Peterson, G.P.: "The Evaporating Extended Meniscus in a V-Shaped

Channel." AIAA Journal of Thermophysics and Heat Transfer, accepted for publication in 1993.

45. Chen, H., Oshima, K., and Hinada, M.: "Numerical Analysis of Thermocapillary and

Evaporating Flows at Low Bond Number." Proceedings of the Symposium on Mechanics of

Space Flight, Sagamihara, Japan, November 24--25, 1988, pp. 39-53.

46. Chung, T.J.: "Continuum Mechanics." First edition, Prentice Hall, Englewood Cliffs, NJ, 1988.

47. Slattery, J.C.: "Momentum, Energy, and Mass Transfer in Continua." Second edition, Krieger

Publishing, Huntington, NY, 1981.

48. Slattery, LC.: "Interfacial Transport Phenomena." First edition, Springer-Verlag, New York, NY,
1990.

49. Kennard, E.: "Kinetic Theory of Gases." First edition, McGraw-Hill, New York, NY, 1938.

50. Patankar, S.V.: "Numerical Heat Transfer and Fluid Flow." Hemisphere, Washington, DC, 1980.

51. Chung, T.J.: "Finite Element Analysis in Fluid Dynamics." McGraw-Hill, New York, NY, 1978.

52. Concus, P.: "Static Menisci in a Vertical Right Circular Cylinder." Journal of Fluid Mechanics,
vol. 34, No. 3, 1968, pp. 481--495.

53. Geiger, F.: "Hydrostatics of a Fluid in a Cylindrical Tank at Low Bond Numbers." Brown

Engineering Research Laboratories, Technical Note R-207, July 1966.

253



Form Approved

REPORT DOCUMENTATION PAGE OMaNo o7o4olss

Public rel:_rting burden for this collection of Information is estimated to average 1 hour per resl_nse, including the time for reviewing Instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and rewewmg the collection of informat=On Send comments re(_arding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headcluartecs Services. Directorate ror Information Operations and Reports, 1215 Jefferson

Davis Highway. Suite 1204, Arlington, VA 22202_130L and to the Office of M anagement and Budget. Pal_rwork Reduction Prc ect (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 1994 Technical Paper
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Thermocapillary Flow With Evaporation and Condensation and Its Effect on

Liquid Retention in Low-G Fluid Acquisition Devices

MSFC, Center Director's Discretionary Fund Final Reoort. Prelect No_ 91-1 __
6. AUTHOR(S)

George R. Schmidt

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

9. SPONSORING/MONITORIN(_ A'GEI_CY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546

B. PERFORMING ORGANIZATION

REPORT NUMBER

M-743

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TP-3463

11. SUPPLEMENTARYNOTES

Prepared by Propulsion Laboratory, Science and Engineering Directorate.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclas sifted--Unlimited

Subject Category: 34

13. ABSTRACT (Maximum 2OO words)

12b. DISTRIBUTION CODE

The steady motion, thermal and free surface behavior of a volatile, wetting liquid in microgravity are

studied using scaling and numerical techniques. The objective i_ to determine whether the thermocapillary and
two-phase convection arising from thermodynamic nonequilibrium along the porous surfaces of spacecraft liquid
acquisition devices could cause the retention failures observed with liquid hydrogen and heated vapor pressurant.
The study also examines why these devices seem immune to retention loss when pressurized with heated helium
or heated directly through the porous structure. Results show that highly wetting fluids exhibit large negative and
positive dynamic pressure gradients towards the meniscus interline when superheated and subeooled, respec-
tively. With superheating, the pressure variation and recoil force arising from liquid/vapor phase change exert

the same influence on surface morphology and promote retention. With subcooling, however, the pressure

distribution produces a suction that degrades mechanical equilibrium of the surface. This result indicates that

thermocapillary-induced deformation arising from subcooling and condensation is the likely cause for retention

loss. In addition, increasing the level of nonequilibrium by reducing accommodation coefficient suppresses

deformation and explains why this failure mode does not occur in instances of direct screen heating or pressur-

ization with a heated inert gas.
II _ IL[I LWI

14. SUBJECTTERMSmicrogravity, surface tension, liquid surfaces, two-phase flow,

thermocapillary flow, evaporation, condensation, liquid acquisition device

bubble-point pressure, finite element, computational fluids
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7S_O-0_-280-SS00

15. NUMBER OF PAGES

270
16. PRICE CODE

A12
20. LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev 2-89)
Prescttb_l by ANSI Std 139-IB

298-102


